
Emanuele Iannone
University of Salerno, Italy

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

Emanuele Iannone
University of Salerno, Italy

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

Emanuele Iannone
University of Salerno, Italy

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

Emanuele Iannone
I Year PhD Student, 24 y.o.

emaiannone.github.io

EmanueleIannone3

eiannone@unisa.it

Emanuele Iannone
I Year PhD Student, 24 y.o.

emaiannone.github.io

EmanueleIannone3

eiannone@unisa.it

Empirical Software
Engineering

Emanuele Iannone
I Year PhD Student, 24 y.o.

emaiannone.github.io

EmanueleIannone3

eiannone@unisa.it

Empirical Software
Engineering

Software Maintenance
and Evolution

Software
Security

Software
Quality

Software testing is expensive,
taking between 30-40% of total

project effort

Software testing is expensive,
taking between 30-40% of total

project effort

Exhaustive testing would be great:
checking ALL possible inputs to

maximize the found bugs

Software testing is expensive,
taking between 30-40% of total

project effort

Exhaustive testing would be great:
checking ALL possible inputs to

maximize the found bugs
UNFEA

SIBLE

There exists approximate but systematic approaches

There exists approximate but systematic approaches

void foo (int a, int b) {
1 if (a < 0)
2 System.out.println(“a is negative”);
3 if (b < 0)
4 System.out.println(“b is negative”);
5 return;
}

1
2

3

5

4

There exists approximate but systematic approaches

void foo (int a, int b) {
1 if (a < 0)
2 System.out.println(“a is negative”);
3 if (b < 0)
4 System.out.println(“b is negative”);
5 return;
}

1
2

3

5

4

Statement
Coverage

Criterion

There exists approximate but systematic approaches

void foo (int a, int b) {
1 if (a < 0)
2 System.out.println(“a is negative”);
3 if (b < 0)
4 System.out.println(“b is negative”);
5 return;
}

1
2

3

5

4

Statement
Coverage

Criterion
{1, 2, 3, 4, 5}

Goals

There exists approximate but systematic approaches

void foo (int a, int b) {
1 if (a < 0)
2 System.out.println(“a is negative”);
3 if (b < 0)
4 System.out.println(“b is negative”);
5 return;
}

1
2

3

5

4

Statement
Coverage

Criterion
{1, 2, 3, 4, 5}

Goals
foo(-1,-1)

TC

There exists approximate but systematic approaches

void foo (int a, int b) {
1 if (a < 0)
2 System.out.println(“a is negative”);
3 if (b < 0)
4 System.out.println(“b is negative”);
5 return;
}

1
2

3

5

4

Path
Coverage

Criterion
{<1,3,5>,
<1,2,3,5>,
<1,3,4,5>,
<1,2,3,4,5>}

Goals
foo(1,1)
foo(-1,1)
foo(1,-1)
foo(-1,-1)

TC

There exists approximate but systematic approaches

void foo (int a, int b) {
1 if (a < 0)
2 System.out.println(“a is negative”);
3 if (b < 0)
4 System.out.println(“b is negative”);
5 return;
}

1
2

3

5

4

Branch
Coverage

Criterion
{<1,2>, <1,3>,
<3,4>, <3,5>}

Goals
foo(1,1)

foo(-1,-1)

TC

There exists approximate but systematic approaches

Unfortunately, this is tedious if done manually

There exists approximate but systematic approaches

Fortunately, we have automated solutions

Fortunately

Unfortunately, this is tedious if done manually

AUTOMATIC TEST
CASE GENERATION

Reformulating the creation of test
cases as an Optimization Problem

AUTOMATIC TEST
CASE GENERATION

Reformulating the creation of test
cases as an Optimization Problem

AUTOMATIC TEST
CASE GENERATION

Generic procedures to define an
optimization algorithm able to quickly
explore the search space and provide

near-optimal solutions

METAHEURISTICS

Reformulating the creation of test
cases as an Optimization Problem

AUTOMATIC TEST
CASE GENERATION

Generic procedures to define an
optimization algorithm able to quickly
explore the search space and provide

near-optimal solutions

METAHEURISTICS

Tabu Search

Ant Colony
Optimization

GENETIC
ALGORITHMS

Simulated
Annealing

GENETIC
ALGORITHMS

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function

Initial Population

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function
GENETIC

ALGORITHMS

Initial Population

Selection

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function
GENETIC

ALGORITHMS

Current population

Initial Population

Selection

Crossover

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function

Current population
New solutions (offsprings)

GENETIC
ALGORITHMS

Initial Population

Selection

Crossover

Mutation

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function

Current population
New solutions (offsprings)

GENETIC
ALGORITHMS

Initial Population

Selection

Crossover

Mutation

End?
NO YES

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function
GENETIC

ALGORITHMS

Initial Population

Selection

Crossover

Mutation

End?
NO YES

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function
GENETIC

ALGORITHMS

Initial Population

Selection

Crossover

Mutation

End?
NO YES

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function
GENETIC

ALGORITHMS

Initial Population

Selection

Crossover

Mutation

End?
NO YES

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function
GENETIC

ALGORITHMS

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function

Initial Population

Selection

Crossover

Mutation

End?
NO YES

GENETIC
ALGORITHMS

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function

Initial Population

Selection

Crossover

Mutation

End?
NO YES

GENETIC
ALGORITHMS

Stopping condition based on search budget
or when convergence is reached

Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

optimize a given fitness function

Initial Population

Selection

Crossover

Mutation

End?
NO YES

GENETIC
ALGORITHMS

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

@Test
public void test(){
Triangle t = new Triangle(10,12,5);
t.computeTriangleType();
}

$t=Triangle(int,int,int):$t.computeTriangleType() @
10, 12, 5

Individual

Encoding

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

$t=Triangle(int,int,int):$t.computeTriangleType() @
10, 12, 5

f(x) = AL(P(x),t) + BD(P(x),t)

Statement

coverage

Individual

Encoding

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

1

25

3 46 7

8 9

10
$t=Triangle(int,int,int):$t.computeTriangleType()

@
2, 2, 2

a == ba != b

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

1

25

3 46 7

8 9

10
$t=Triangle(int,int,int):$t.computeTriangleType()

@
2, 2, 2

a == ba != b

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

1

25

3 46 7

8 9

10
$t=Triangle(int,int,int):$t.computeTriangleType()

@
2, 2, 2

AL = 2

a == ba != b

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

1

25

3 46 7

8 9

10
$t=Triangle(int,int,int):$t.computeTriangleType()

@
2, 2, 2

AL = 2

BD = 0.5

a == ba != b

f(x) = 2.5

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

1

25

3 46 7

8 9

10
$t=Triangle(int,int,int):$t.computeTriangleType()

@
2, 3, 4

AL = 0

BD = 0.5

b != c

f(x) = 0.5

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

1

25

3 46 7

8 9

10
$t=Triangle(int,int,int):$t.computeTriangleType()

@
2, 3, 3

AL = 0

BD = 0
f(x) = 0

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

x1 = 2, 2, 2

x2 = 2, 3, 4
x3 = -2, 3, 6

x4 = 2, 3, 7

Initial Pop.

Selection

Crossover

Mutation

End?
NO YES

x5 = 2, 2, 5

x6 = 3, 4, 5

x7 = 3, 5, 7 x8 = 6, 8, 4

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

x1 = 2, 2, 2

x2 = 2, 3, 4
x3 = -2, 3, 6

x4 = 2, 3, 7

Initial Pop.

Selection

Crossover

Mutation

End?
NO YES

x5 = 2, 2, 5

x6 = 3, 4, 5

x7 = 3, 5, 7 x8 = 6, 8, 4

Rank Selection

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

x1 = 2, 2, 2

x2 = 2, 3, 4
x3 = -2, 3, 6

x4 = 2, 3, 7

Initial Pop.

Selection

Crossover

Mutation

End?
NO YES

x5 = 2, 2, 5

x6 = 3, 4, 5

x7 = 3, 5, 7 x8 = 6, 8, 4

Single Point Crossover

x1 = 2, 2, 2

x2 = 2, 4, 5
x3 = -2, 3, 6

x4 = 2, 3, 7

x5 = 2, 2, 5

x6 = 3, 3, 4

x7 = 3, 5, 4 x8 = 6, 8, 7

α = 0.8

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

x1 = 2, 2, 2

x2 = 2, 3, 4
x3 = -2, 3, 6

x4 = 2, 3, 7

Initial Pop.

Selection

Crossover

Mutation

End?
NO YES

x5 = 2, 2, 5

x6 = 3, 4, 5

x7 = 3, 5, 7 x8 = 6, 8, 4

Uniform Mutation

x1 = 2, 2, 2

x2 = 2, 5, 5
x3 = -2, 3, 6

x4 = 2, 8, 7

x5 = 2, 2, 5

x6 = 3, 3, 4

x7 = 3, 5, 10 x8 = 6, 8, 7

α = 0.4

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

x1 = 2, 2, 2

x2 = 2, 3, 4
x3 = -2, 3, 6

x4 = 2, 3, 7

Initial Pop.

Selection

Crossover

Mutation

End?
NO YES

x5 = 2, 2, 5

x6 = 3, 4, 5

x7 = 3, 5, 7 x8 = 6, 8, 4

x1 = 2, 2, 2

x2 = 2, 5, 5
x3 = -2, 3, 6

x4 = 2, 8, 7

x5 = 2, 2, 5

x6 = 3, 3, 4

x7 = 3, 5, 10 x8 = 6, 8, 7

Convergence reached! The evolution
stops and returns the best individual

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

x1 = 2, 2, 2

x2 = 2, 3, 4
x3 = -2, 3, 6

x4 = 2, 3, 7

Initial Pop.

Selection

Crossover

Mutation

End?
NO YES

x5 = 2, 2, 5

x6 = 3, 4, 5

x7 = 3, 5, 7 x8 = 6, 8, 4

x1 = 2, 2, 2

x2 = 2, 5, 5
x3 = -2, 3, 6

x4 = 2, 8, 7

x5 = 2, 2, 5

x6 = 3, 3, 4

x7 = 3, 5, 10 x8 = 6, 8, 7

Convergence reached! The evolution
stops and returns the best individual

Now we can repeat the entire process selecting a different coverage target.

Use Cases of ATCG

Making the
System Crash

Supporting
Debugging

Facilitate the
Tester’s Job

Use Cases of ATCG

Making the
System Crash

Supporting
Debugging

Facilitate the
Tester’s Job

Drawbacks of ATCG

Test Code
Quality

The Oracle
Problem

Setting the
Metaheuristic

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

Discovering
Vulnerabilities?

Discovering
Vulnerabilities?

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

Known Vulnerabilities
Assessment

Discovering
Vulnerabilities?

Known Vulnerabilities
Assessment

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

Generate Tests!

Search-based automatIc
Exploit GenEration

SIEGE

Toward Automated Exploit Generation for Known Vulnerabilities in Open-Source Libraries
E. Iannone, D. Di Nucci, A. Sabetta, A. De Lucia.

In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

A
Client application

B
C

D

FE

3rd Party Library

Toward Automated Exploit Generation for Known Vulnerabilities in Open-Source Libraries
E. Iannone, D. Di Nucci, A. Sabetta, A. De Lucia.

In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

SIEGE

A
Client application

B
C

D

FE

3rd Party Library

Vulnerability Location

SIEGE

Toward Automated Exploit Generation for Known Vulnerabilities in Open-Source Libraries
E. Iannone, D. Di Nucci, A. Sabetta, A. De Lucia.

In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

A
Client application

B
C

D

FE

3rd Party Library

Vulnerability Location

SIEGE

Generates

SIEGE’s Exploit

Toward Automated Exploit Generation for Known Vulnerabilities in Open-Source Libraries
E. Iannone, D. Di Nucci, A. Sabetta, A. De Lucia.

In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

A
Client application

B
C

D

FE

3rd Party Library

Vulnerability Location

SIEGE

Generates

SIEGE’s Exploit

Starts from

Toward Automated Exploit Generation for Known Vulnerabilities in Open-Source Libraries
E. Iannone, D. Di Nucci, A. Sabetta, A. De Lucia.

In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

A
Client application

B
C

D

FE

3rd Party Library

Vulnerability Location

SIEGE

Generates

SIEGE’s Exploit

Starts from

Toward Automated Exploit Generation for Known Vulnerabilities in Open-Source Libraries
E. Iannone, D. Di Nucci, A. Sabetta, A. De Lucia.

In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

SIEGE runs on an arbitrary Java
application that includes
vulnerable dependencies

SIEGE runs on an arbitrary Java
application that includes
vulnerable dependencies

SIEGE extracts the entire
classpath call graph and the

control flow graphs

SIEGE runs on an arbitrary Java
application that includes
vulnerable dependencies

SIEGE extracts the entire
classpath call graph and the

control flow graphs

SIEGE largely reuses of EvoSuite
features: program analysis, bytecode
instrumentation, ATCG infrastructure,

test execution engine.

SIEGE needs to locate the target
vulnerable construct:
(1) Class name
(2) Method name
(3) Line number

SIEGE needs to locate the target
vulnerable construct:
(1) Class name
(2) Method name
(3) Line number

Prepare the fitness function that
rewards the test cases that are

closer to the target line

SIEGE needs to locate the target
vulnerable construct:
(1) Class name
(2) Method name
(3) Line number

public void process(final HttpRequest request, final HttpContext context) {
66 if (request == null) {
67 throw new IllegalArgumentException("HTTP request may not be null");
68 }
69 if (context == null) {
70 throw new IllegalArgumentException("HTTP context may not be null");
71 }
72
73 if (request.containsHeader(AUTH.PROXY_AUTH_RESP)) {
74 return;
75 }
76
77 // Obtain authentication state
78 AuthState authState = (AuthState) context.getAttribute(
79 ClientContext.PROXY_AUTH_STATE);
...
}

Prepare the fitness function that
rewards the test cases that are

closer to the target line CVE-2011-1498

A population of JUnit test cases is
evolved with a GA...

A population of JUnit test cases is
evolved with a GA...

...if a test case covers the target
vulnerable line...

A population of JUnit test cases is
evolved with a GA...

...if a test case covers the target
vulnerable line...

...it is considered an exploit!

public void test0() throws Throwable {

CallingClient1 callingClient1_0 = new CallingClient1();

BasicHttpRequest basicHttpRequest0 =

new BasicHttpRequest("", "");

BasicHttpContext basicHttpContext0 =

new BasicHttpContext((HttpContext) null);

callingClient1_0.call(basicHttpRequest0,

basicHttpContext0);

}

Exploit for
CVE-2011-1498

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

KB Dataset

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

KB Dataset 11 CVE

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

KB Dataset 11 CVE

11 OSS Projects

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

KB Dataset 11 CVE

11 OSS Projects

11 “Toy”
Clients

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

KB Dataset 11 CVE

11 OSS Projects

11 “Toy”
Clients

Test w/ Different
Search Budgets

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Commons Compress

Tomcat

Jasypt

Jenkins

Multijob

Commons FileUpload

HttpCommons Client

Zeppelin

Nifi

Mailer

Primefaces

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Commons Compress

Tomcat

Jasypt

Jenkins

Multijob

Commons FileUpload

HttpCommons Client

Zeppelin

Nifi

Mailer

Primefaces

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Commons Compress

Tomcat

Jasypt

Jenkins

Multijob

Commons FileUpload

HttpCommons Client

Zeppelin

Nifi

Mailer

Primefaces

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Commons Compress

Tomcat

Jasypt

Jenkins

Multijob

Commons FileUpload

HttpCommons Client

Zeppelin

Nifi

Mailer

Primefaces

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

The intrinsic complexity of a vulnerability
makes the exploit generation harder

Findings

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

The intrinsic complexity of a vulnerability
makes the exploit generation harder

The way the client application “guards” the
vulnerable constructs makes the exploit

generation harder

Findings

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

The intrinsic complexity of a vulnerability
makes the exploit generation harder

The way the client application “guards” the
vulnerable constructs makes the exploit

generation harder

The GA settings influences the exploit
generation performance

Findings

Future
Directions

Risk Reporting
SIEGE could produce a report in which

it explains why it succeeded/failed.

Future
Directions

Risk Reporting
SIEGE could produce a report in which

it explains why it succeeded/failed.

Vulnerability Generalized Description
Automatically build the fitness function

using Steady’s Patch Analyzer

Future
Directions

Risk Reporting
SIEGE could produce a report in which

it explains why it succeeded/failed.

Future
Directions

Vulnerability Generalized Description
Automatically build the fitness function

using Steady’s Patch Analyzer

Extended Evaluation
Consider real-world client applications

and larger set of CVEs

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

