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There exists approximate but systematic approaches

void foo (int a, int b) {
1 if (a < 0)
2 System.out.println(“a is negative”);
3 if (b < 0)
4 System.out.println(“b is negative”);
5 return;
}
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9 checkRightAngle();
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10 System.out.println(type);
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t.computeTriangleType();
}

$t=Triangle(int,int,int):$t.computeTriangleType() @
10, 12, 5

Individual 

Encoding



Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

$t=Triangle(int,int,int):$t.computeTriangleType() @
10, 12, 5

f(x) = AL(P(x),t) + BD(P(x),t)
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Individual 

Encoding
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void computeTriangleType() {
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Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
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}
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6 type = "ISOSCELES";

} else {
7 if (b == c)
8 type = "ISOSCELES";

else
9 checkRightAngle();

}
10 System.out.println(type);
}

x1 = 2, 2, 2

x2 = 2, 3, 4
x3 = -2, 3, 6

x4 = 2, 3, 7

Initial Pop.

Selection

Crossover

Mutation

End?
NO YES

x5 = 2, 2, 5

x6 = 3, 4, 5

x7 = 3, 5, 7 x8 = 6, 8, 4

Single Point Crossover

x1 = 2, 2, 2

x2 = 2, 4, 5
x3 = -2, 3, 6

x4 = 2, 3, 7

x5 = 2, 2, 5

x6 = 3, 3, 4

x7 = 3, 5, 4 x8 = 6, 8, 7

α = 0.8



Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
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} else {
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Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == c)
3 type = "EQUILATERAL";

else
4 type = "ISOSCELES";

}
5 else if (a == c) {
6 type = "ISOSCELES";

} else {
7 if (b == c)
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else
9 checkRightAngle();

}
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Now we can repeat the entire process selecting a different coverage target.
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Metaheuristic



Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

Discovering 
Vulnerabilities?



Discovering 
Vulnerabilities?

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

Known Vulnerabilities 
Assessment



Discovering 
Vulnerabilities?

Known Vulnerabilities 
Assessment

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities
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SIEGE runs on an arbitrary Java 
application that includes
vulnerable dependencies

SIEGE extracts the entire 
classpath call graph and the 

control flow graphs

SIEGE largely reuses of EvoSuite
features: program analysis, bytecode 
instrumentation, ATCG infrastructure, 

test execution engine.
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SIEGE needs to locate the target 
vulnerable construct:
(1) Class name
(2) Method name
(3) Line number

public void process(final HttpRequest request, final HttpContext context) {
66 if (request == null) {
67 throw new IllegalArgumentException("HTTP request may not be null");
68 }
69 if (context == null) {
70 throw new IllegalArgumentException("HTTP context may not be null");
71 }
72
73 if (request.containsHeader(AUTH.PROXY_AUTH_RESP)) {
74 return;
75 }
76
77 // Obtain authentication state
78 AuthState authState = (AuthState) context.getAttribute(
79 ClientContext.PROXY_AUTH_STATE);
...
}

Prepare the fitness function that 
rewards the test cases that are 

closer to the target line CVE-2011-1498
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A population of JUnit test cases is 
evolved with a GA...

...if a test case covers the target 
vulnerable line...

...it is considered an exploit!



public void test0() throws Throwable {

CallingClient1 callingClient1_0 = new CallingClient1();

BasicHttpRequest basicHttpRequest0 =

new BasicHttpRequest("", "");

BasicHttpContext basicHttpContext0 =

new BasicHttpContext((HttpContext) null);

callingClient1_0.call(basicHttpRequest0, 

basicHttpContext0);

}

Exploit for
CVE-2011-1498
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Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party 
vulnerabilities included within client applications?

The intrinsic complexity of a vulnerability 
makes the exploit generation harder

The way the client application “guards” the 
vulnerable constructs makes the exploit 
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Vulnerability Generalized Description
Automatically build the fitness function 

using Steady’s Patch Analyzer 

Extended Evaluation
Consider real-world client applications 

and larger set of CVEs
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