
1

(Dynamic) Security Testing and
Exploit Generation

Emanuele Iannone
Institute of Software Security, TU Hamburg, Germany

International School
University of Salerno, Avellino, 16 June 2025

2

Whoami

Emanuele Iannone
em***.***ne@tuhh.de

emaiannone.github.io

@EmanueleIannon3

Nationality

Career

Italian

B.Sc. in Computer Science @ UNISA
Refactoring for Android Energy Consumption

2015 - 2018

M.Sc. in Computer Science @ UNISA
Test Generation for 3rd-party Vulnerabilities

2018 - 2020

Ph.D. in Computer Science @ UNISA
Empirical Comprehension and Automated
Approaches for Software Vulnerabilities

2020 - 2024

Postdoctoral Researcher @ TU Hamburg 2023 - curr.

Research Interests Security Vulnerability Testing
Mining Software Repositories & Software Analytics (for security)
AI for Software Security Engineering

Sec4AI4Sec EU Horizon Project
(Grant ID: 101120393)

3

Security Testing… uh?

What is software testing?

4

Security Testing… uh?

What is software testing?
The key activity for finding defects in a test item.1
A test item can be the whole system, a subsystem, a class, a method, a function, etc.
If a test item can be executed, software testing can be dynamic, i.e., the source code is
executed through test cases.
A test case runs the test item with specific input and observes whether the results
obtained match the expected ones, given certain preconditions.
The expected results are decided by a source of information called oracle, which can
often (but not always) be the specification of the test item.

1ISO/IEC/IEEE International Standard - Software and systems engineering --Software testing --Part 1:General concepts (ISO/IEC/IEEE 29119-1:2022)

5

Security Testing… uh?

What is security testing?

6

Security Testing… uh?

What is security testing?
An activity that verifies the protection against unauthorized access and
allows entry for authorized parties.1
Access = Use, read, modify. A test item can also be data, not just code!
When no context is given, software testing aims to find functional defects (bugs).
However, software testing can also find other kinds of defects, including security
defects (i.e., vulnerabilities) that threaten some security properties of the test item.
Our scope: Vulnerabilities affecting the source code directly.
• Ignore those affecting the whole architecture, the infrastructure, or the network.

1ISO/IEC/IEEE International Standard - Software and systems engineering --Software testing --Part 1:General concepts (ISO/IEC/IEEE 29119-1:2022)

7

Static Testing vs. Dynamic Testing
Historically: Testing is a dynamic activity. Period.

Today: Testing can be static or dynamic.

It does not really matter as long as we agree on the terminology.

Our focus is on dynamic testing, but let's examine the key differences
between it and static testing (commonly called “static analysis”).

• No code is run; only inspected (less realistic).
• Requires the source code.
• Multiple code paths can be explored.
• They can prove the absence of a vulnerability

but cannot prove their presence.

• The code is actually run (more realistic).
• Requires an interface to run the code.
• Only some code paths can be explored.
• They can prove the presence of a vulnerability

but cannot prove their absence.

Static Testing Dynamic Testing

8

(Dynamic) Security Testing: Pros and Cons
Less subject to false positives: The actual reaction of the test item is more reliable
than a “warning” from a static analysis tool.

The findings can be proof-of-concepts of vulnerabilities (good for disclosing them).

They can reveal issues caused by the configuration and the host (beyond code).

It requires buildable AND runnable code (not good for early development stages).

High expertise might be required:
• Tool designers must think of many scenarios to cover.
• Tool users must learn to configure the tool adequately.

Difficult to triangulate the exact location of the vulnerabilities found.

Cannot find “weak code smell”, but only exploitable issues.

9

(Dynamic) Security Testing Techniques

Vulnerability
Scanning

Fuzzing

Penetration
Testing

Code-level
Security Testing

We’ll briefly see each of them, focusing more on the code-level security testing.

10

Vulnerability Scanning

11

Vulnerability Scanners
Vulnerability scanning consists of systematically stimulating an application
with precise inputs (i.e., payloads) to uncover vulnerabilities.
• Very often, the application is web-based (but not necessarily).
• The inputs tested are pre-defined within the vulnerability scanner

because they historically/empirically demonstrated to trigger specific
vulnerability types effectively (users can add custom inputs).

Scanning is often called Dynamic Application Security Testing (DAST).
• People often (mis)use this term, including fuzzing and other techniques within it.
• No precise/standard definition of what DAST really is…

12

Vulnerability Scanners: The Process
In essence, scanners see the tested application as a black box: The inputs
are sent from the application interface, e.g., HTTP requests.
• White-box scanners exist but are less common.
Steps of a standard (web) scanner
1) Discovery. The scanner runs crawlers (a.k.a. spiders) to map the URL/endpoints that
can accept the inputs. Crawlers can follow static and/or dynamically generated links.
2) Send Input. For each vulnerability type supported, the scanner starts sending the
pre-defined inputs to the entry points mapped.
3) Interpret Response. Assess whether an input “triggered” a behavior that indicates
the presence of a vulnerability (example in the next slide).
4) Report. Document the findings obtained.

13

Vulnerability Scanners: An Example
Let us suppose the crawler found a web page with a search form (one
text field and a submit button).

What input would you try?

14

Vulnerability Scanners: An Example
Let us suppose the crawler found a web page with a search form (one
text field and a submit button).

For Cross-site Scripting (XSS): Send an input like <script>alert(VALUE);</script>.
• If the browser shows a popup containing VALUE, then the application is likely

vulnerable to a (reflected) XSS.
For Buffer Overflow: Send a VERY long input.
• If the server stops responding or the session is abruptly closed, then a crash has

likely occurred due to a buffer overflow.
Some scanners can find likely vulnerabilities by simply looking at the responses
obtained during the crawling without sending any malicious input (passive checks).
• For example, HTTP responses containing cookies without the “HttpOnly” flag.

What input would you try?

15

Vulnerability Scanners: Pros and Cons
Good for beginners (rely on the pre-defined checks).
Support many common vulnerability types (SQLi, XSS, Buffer Overflow,
Input Validation, Improper Access Control, etc.)
Fully automated and somewhat easy to plug into a Continuous
Integration pipeline.
The application must be built AND deployed (so it can only be done at
later development stages)
More advanced checks must be defined by the user, which is not easy
for beginners.
Only a few are free and open-source (e.g., OWASP ZAP); most are
commercial (though there can be free community editions).

16

Fuzzing

17

Fuzzing: The Origin
In 1988, Barton Miller (University of Wisconsin) asked his students to write a small
program that “fuzzes” various UNIX utilities (programs that can be called from the
command line) with “random” inputs to see what happened.
This helped reveal several inputs that led them to crash or hang.

What’s the relation with security?

18

Fuzzing: The Origin
In 1988, Barton Miller (University of Wisconsin) asked his students to write a small
program that “fuzzes” various UNIX utilities (programs that can be called from the
command line) with “random” inputs to see what happened.
This helped reveal several inputs that led them to crash or hang.

What’s the relation with security?
Crashes and hangs violate the security property of availability.
• Think of a server application that stops serving clients…

They are the consequence of various bad things (partial list):
• Segmentation fault (e.g., due to buffer overrun).
• Illegal memory access (Use-after-free, double-free, etc.).
• Resource exhaustion.
• Unhandled errors/exceptions.
• Infinite loop.

19

Fuzzing: Is Random the Right Way?
With random inputs, something will come out… sooner or later. But how
much “later”?

What’s the problem with full randomness?

20

Fuzzing: Is Random the Right Way?
With random inputs, something will come out… sooner or later. But how
much “later”?

What’s the problem with full randomness?

Unfortunately, going fully random is not:
• Effective: Most interesting bugs hide behind corner cases (out-of-the-

ordinary input), often in program paths that are difficult to reach.
o Indeed, the “defect distribution” in the input space is not uniform.

• Efficient: A random (uniform) search usually leads to input that does
not reveal any bugs, wasting precious time (budget).

21

Fuzzing: Guidance Strategies
For this, researchers added some guidance strategies to the input
generation. A guidance criterion is good when:
• It covers common corner cases, such as empty strings, very long

strings, min/max values of integer ranges, nulls, zeros, and negative
values. (Boundary Value Analysis).
o Rationale: the majority of bugs hide behind them.

• It is aware of the consumer of the input. For example:
o If the input is a string that ends up in a printf() � format string characters (%s, %x, %n)
o If the input is a string that ends up in a web page � HTML tags
o If the input is a string that ends up in an SQL statement � SQL keywords
o If the input is a string that ends up in a file path � Slashes and dots
o etc.

22

Families of Fuzzing
Several families exist. These are the most prominent (not exhaustive).

Blackbox
Fuzzing

Greybox
Fuzzing

Whitebox
Fuzzing

Mutation-based
Fuzzing

Grammar-based
Fuzzing

23

Blackbox Fuzzing

The user provides an initial input called seed. The seed can come from data observed
during the program’s ordinary use. Multiple seeds can be used, forming a seed corpus.

The fuzzer picks one of the seeds and applies random mutations according to specific
rules (chosen by the fuzzer’s designer) to generate new inputs to test.

Very easy to design, but the success highly depends on the seed corpus.
• Selecting a well-diversified seed corpus is crucial (and challenging).

The tested program is only called from the “outside”, i.e., through its
interface. No source code is needed (like the original approach by Miller).

Mutation-based Fuzzing

24

Mutation-based Fuzzing: A Minimal Working Example
def insert_random_character(s):

"""Returns s with a random character inserted"""
pos = random.randint(0, len(s))
random_character = chr(random.randrange(32, 127))
return s[:pos] + random_character + s[pos:]

for i in range(10):
print(repr(insert_random_character('A quick brown fox')))

>>> 'A quick brvown fox’
>>> 'A quwick brown fox’
>>> 'A qBuick brown fox’
>>> 'A quick broSwn fox’
>>> 'A quick brown fvox’

More on https://www.fuzzingbook.org/html/MutationFuzzer.html

If more operators exist, a
randomness factor can be

used to select which to call.

More mutation
operators can be

defined.

The seed can be randomly
picked from a corpus rather

than being a specific one.

25

Blackbox Fuzzing

The user provides a set of specifications of the legitimate inputs that the tested
program can accept. Such specifications are often implemented as grammars.
• A grammar describes the syntax of an input.
The fuzzer generates “random” input data using the grammar.
• The input will surely be legal (no boundary value analysis) but can explore deeper

and hard-to-reach program paths.
• Adding a mutational component on top can add the boundary value analysis.
Easy to design, but the challenge stands in providing the correct grammar for each
input the program can accept (there can be many).

The tested program is only called from the “outside”, i.e., through its
interface. No source code is needed (like the original one by Miller).

Grammar-based Fuzzing

26

Grammar-based Fuzzing: Example Grammar
Grammar for arithmetic expressions
<start> ::= <expr>
<expr> ::= <term> + <expr> | <term> - <expr> | <term>
<term> ::= <term> * <factor> | <term> / <factor> | <factor>
<factor> ::= +<factor> | -<factor> | (<expr>) | <integer> | <integer>.<integer>
<integer> ::= <digit><integer> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A (context-free) grammar consists of a <start> symbol and a set of expansion rules that indicate
how the <start> symbol and other nonterminal symbols can be expanded (until all are
exhausted). The vertical bar indicates alternative expansions we can take.

Let us generate a random input as if we were a fuzzer. We begin with <start> and randomly pick
expansion rules every time we have a nonterminal symbol.
<start> � <expr> � <term> + <expr> � <factor> + <expr> � -<factor> + <expr> � -
<integer> + <expr> � -<digit> + <expr> � -6 + <expr> � [continue on your own]

More on: https://www.fuzzingbook.org/html/Grammars.html

https://www.fuzzingbook.org/html/Grammars.html

27

Greybox Fuzzing
Similar to a mutation-based fuzzer with a seed corpus, but it also observes
the program execution to try to understand the “promising” inputs.
A seed is picked from the corpus. If one of the mutations covers new
branches or paths, that seed is rewarded as a “progressive”, i.e., it will be
selected more often than others.
• To measure the coverage, access to the source code is needed.
• Since it only needs to map the branches and paths covered, lightweight

instrumentation is sufficient.
o This is why it is called “gray” rather than “white”.

The reward model and how to spend the time budget are decided by the
so-called power schedule (many algorithms exist).

28

Greybox Fuzzing: Notable Tools
Google’s American Fuzzy Lop (AFL) is perhaps the most famous.
• It has been used to discover many vulnerabilities that often end up being disclosed

as CVEs.

Many extensions (called flavors):
•AFLGo, AFLFast, AFLNet, AFLSmart, ...
•Each aims to improve the various components in it, mainly the power schedule and
the seed selection mechanism.

Available at: https://github.com/google/AFL/
More on https://www.fuzzingbook.org/html/GreyboxFuzzer.html

https://github.com/google/AFL/
https://github.com/google/AFL/
https://github.com/google/AFL/
https://github.com/google/AFL/
https://github.com/google/AFL/
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.fuzzingbook.org/html/GreyboxFuzzer.html

29

Whitebox Fuzzing
It aims to reach specific program paths and generates input covering
them. This requires deeper program analysis (not just instrumentation).
• Often use Control- and Data-flow analysis.
• Many are based on symbolic execution (or its variants) and constraint satisfaction.
• Meta-heuristic search algorithms are also used.
• Takes significant time.

Greybox vs. Whitebox: Greybox aims to discover new execution paths
with random mutations, while whitebox targets specific program paths.

Example: Microsoft SAGE (academic tool).

30

Fuzzing: Pros and Cons
Simple to set up (especially blackbox ones).
Fully automated and somehow easy to plug into a Continuous
Integration pipeline.
Produces a few false positives (crashes are self-explanatory).
Requires a significant time to return many findings.
Not all findings are vulnerabilities: Need an effective oracle (humans).
Existing fuzzers mainly target program binaries.
• However, they can work with anything if designed properly, e.g., APIs and GUIs.

31

Penetration Testing

32

Penetration Testing (Pen Testing)
Authorized, simulated cyber attacks against a computer system
(application, OS, network) to identify exploitable vulnerabilities.
• Simulated = the goal is to find security problems, not to cause real harm.

Typically, it is performed by the so-called red team, which can be made of
sysadmins (internal) or trusted security consultants.
• It can also be done in a “competition” style with a blue team (with bounty).

The tested system is often not in actual production but in a controlled test
environment (though realistic).

33

Phases of Penetration Testing
1. Reconnaissance and Infomation Gathering

• Collect as much information as possible on the target (whois, nslookup).

2. Target Scanning
• Obtain information about all the available hosts within the network.
• Map the attack surface (port scanning, fingerprinting, web crawling).

3. Vulnerability Assessment and Exploitation
• Check the exploitability of vulnerabilities (start with known vulnerabilities first).
• Try to achieve the maximum harm, i.e., gain root privileges (e.g., spawn a root

shell or retrieve the credentials of an admin account).

4. Post-Exploitation and Reporting
• Remove all traces and document the process to the client.

34

The Reality of Penetration Testing
Pen testing is NOT a technique; it’s an activity driven by people.
• Very expensive.
• The success depends on the expertise of the testers.

Its activities are often supported by existing automated tools (almost off
the shelf):
• Vulnerability scanners (Burp Suite, ZAP, …)
• Metasploit (the essential toolkit for pen testers).

At the same time, they often require extensive manual hacking (few
people are skilled enough to offer these services) and custom scripts.

35

Code-level Security Testing

36

Code-level Security Testing
Idea: Write and run specific test cases targeting a code component (e.g., a
class method) to check if “it works from a security perspective”.

Key differences with “ordinary” functional testing:
• Focus on the security specification defined on the tested component.
• Focus on the security risks affecting the tested component.

We can also invoke 2+ components together.
• Useful when the real target component cannot be invoked easily (e.g., private).

Let’s quickly go over code-level “ordinary” software testing.

37

Software Testing 101
Software testing is the default activity to find functional defects/bugs by
running code (dynamic).
• Defects/bugs are caused by a discrepancy between the implementation of the

component and its functional specification (dictating its expected behavior).
• Specification: A more or less formal description explaining how the component is

expected to behave at certain inputs and preconditions.

A test case runs the component with one input and observes whether the
results obtained match the expected ones (given the precondition).
• Often relying on automated assertions that fail when there is a discrepancy.
• Test cases are often implemented as code and run automatically via testing

frameworks, e.g., JUnit, Pytest, Selenium, and many others.

38

Software Testing 101: Example of a Test Cases
Buggy method!

What’s wrong with this method?

39

Software Testing 101: Example of a Test Cases
Buggy method!

What tests would you write?

40

Software Testing 101: Example of a Test Cases

Setup: Prepare the input data and
the state of the object to invoke.
(Here, there is nothing to prepare;
just send one integer).
Action: Invoke the target method.
Verification: Check whether the
actual outcomes match the expected
outcomes (through assertions).

Buggy method!

41

Software Testing 101
Theoretical goal: find all defects.
• Impossible, infinite execution domain.
• We cannot prove that a component is defect-free.

Practical goal: maximize the number of failures.
• Writing as many (non redundant) tests as possible.

Unit (Component)

Integration

System

Less realistic (distant from user interactions)
Less complex
Find uncommon bugs
MANY needed

More realistic (close to user interactions)
More complex
Find common bugs
Some needed

Not just components! The test target depends on the granularity level.

42

Software Testing for Code-level Security
Now, we want to reuse this knowledge to test the security of components.

Can the common security properties be a starting point?
• Based on the “CIA Triad” (Confidentiality, Integrity, Availability), extended with

Accountability, Non-Repudiation, and Authenticity.
• Too high-level: They do not help select precise security test cases.

We resort to security specifications (requirements).
• Just like functional specification but focused on security (no surprise).
• Example: “The method must encrypt its data before writing to a file.”

43

Security Requirements

What security requirement would you define?

Suppose we want to define a security requirement for a login method that (1) receives
the input and password text fields from the HTTP (POST) request, (2) checks the
database for the existence of the user and password match, (3) returns “True” if the
user can be authorized, else “False”.

44

Security Requirements

What security requirement would you define?

Suppose we want to define a security requirement for a login method that (1) receives
the input and password text fields from the HTTP (POST) request, (2) checks the
database for the existence of the user and password match, (3) returns “True” if the
user can be authorized, else “False”.

One possibility (not realistic, just an example):
• The login must detect failed attempts and block the IP if five failed attempts

occurred within 1 minute.

Security specifications are functional descriptions of security mechanisms!
• For this, they are also known as security features.

45

Security Requirements

What could be the right test cases?

Now, given this “brute force prevention” mechanism for a login method…

46

Security Requirements

What could be the right test cases?

Now, given this “brute force prevention” mechanism for a login method…

Examples (not complete, many other cases exist):
• Fail the login four times within 1 minute. Expected: no auth, but no block.
• Fail the login five times within 1 minute. Expected: no auth, but no block.
• Fail the login six times within 1 minute. Expected: no auth, and sixth is blocked.
• Fail the login four times within 1 minute and twice within the second minute.

Expected: no auth, but no block.

Take-home: As long as we have well-defined security requirements, we
can select test cases just as ordinary functional test cases.

47

Security Requirements: The Reality
Unfortunately, not all gold that glitters. This approach works as long as:
• We identify all security requirements (completeness).
• Each requirement is well defined (correctness).

Possible solution
Rely on threat modeling, particularly on abuse-misuse cases, to identify as
many security requirements as possible.
• Problems: time-consuming, expert-driven, lack of automation.
We need another approach...

48

Risk-based Security Testing
Instead of defining requirements, we select security test cases based on
knowing which vulnerability types can affect the tested component.
• Catalogs of vulnerabilities: MITRE’s CWE; OWASP Top 10 Threats.
• Catalogs of attacks: MITRE’s CAPEC.

Not just boring catalogs: We can also rely on security testing guides:
• OWASP WSTG - Web Security Testing Guide (practical).
• OWASP ASVS - Application Security Verification Standard (high-level).
• OWASP Cheat Sheet Series (developer perspective more than tester).

So, a test case based on risks checks whether the tested component is
vulnerable to certain attacks (e.g., because of improper protection).

49

Risk-based Security Testing
Suppose we want to find the security risks of the same login method as before.

What vulnerability types would you look at?

50

Risk-based Security Testing
Suppose we want to find the security risks of the same login method as before.

What vulnerability types would you look at?

Examples (not complete):
• CWE-89 – SQL Injection (if the method queries to an SQL database).
• CWE-79 – XSS (as username and password are free text fields).
• CWE-307 – Brute Force (just as the requirements defined before).
• CWE-387 – Session Fixation (it is recommended to have a new unpredictable session

token generated after a successful login and never reuse old ones).

51

Risk-based Security Testing
Suppose we want to find the security risks of the same login method as before.

What vulnerability types would you look at?

Examples (not complete):
• CWE-89 – SQL Injection (if the method queries to an SQL database).
• CWE-79 – XSS (as username and password are free text fields).
• CWE-307 – Brute Force (just as the requirements defined before).
• CWE-387 – Session Fixation (it is recommended to have a new unpredictable session

token generated after a successful login and never reuse old ones).

What test cases would you write for CWE-89?

52

Risk-based Security Testing
Suppose we want to find the security risks of the same login method as before.

What vulnerability types would you look at?

Examples (not complete):
• CWE-89 – SQL Injection (if the method queries to an SQL database).
• CWE-79 – XSS (as username and password are free text fields).
• CWE-307 – Brute Force (just as the requirements defined before).
• CWE-387 – Session Fixation (it is recommended to have a new unpredictable session

token generated after a successful login and never reuse old ones).

What test cases would you write for CWE-89?

Input: OR 1=1;-- Expected: login granted even with wrong credentials.

53

Security Test Case: An Example
CVE-2018-1274 in Spring Data Commons. The resolution of “property paths” (a
notation to access nested object fields) in method PropertyPath.create() could use
too many resources if deeply nested property paths were supplied (user-controlled).

Vulnerable method

Fails: There is a problem!
PropertyPath.from() calls
PropertyPath.create() indirectly!

54

Security Test Case: An Example
CVE-2018-1274 in Spring Data Commons. The resolution of “property paths” (a
notation to access nested object fields) in method PropertyPath.create() could use
too many resources if deeply nested property paths were supplied (user-controlled).

Vulnerable method

PropertyPath.from() calls
PropertyPath.create() indirectly!

Developer fix: max 1000 segments

Passes: Fix looks good!

55

Vul4J: A Catalog of Security Test Cases

In project Sec4AI4Sec, we further extended this dataset with more tests, which
were found and generated with AI. The extension is called Vul4J+.

1Q. -C. Bui, R. Scandariato and N. E. D. Ferreyra, "Vul4J: A Dataset of Reproducible Java Vulnerabilities Geared Towards the Study of Program Repair
Techniques," 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), Pittsburgh, PA, USA, 2022.

Vul4J

ProjectKB
Vuln-Fix

Pairs

Fix
Commits

Test Suite
after Fix

69 Fail-to-
Pass Tests

Designer

(912 vuln)

The previous test case is contained in Vul4J1, a dataset of 79 known vulnerabilities with
fix commits and test cases like the one seen earlier.
•Fail in the vulnerable version, pass in the fixed versions.
•Also called Proof of Vulnerabilities (PoV).

10 Fail-to-
Pass Tests

56

Code-level Security Testing: Pros and Cons
Closer to the developer: the tests are more focused and customizable.
• Unlike other dynamic testing approaches.

Can be done as soon as the development starts.
• No other dynamic testing approach can do this!

Test cases can be versioned and reused multiple times (especially in CI
pipelines), also guarding against regressions.
Must be designed and implemented with attention (no “fire and
forget”) and have to be maintained.
• It seems security tests are an afterthought, added only to demonstrate a fix is

correct (we need more empirical studies to confirm this behavior).

57

Code-level Security Testing: Developers’ View
How do developers perceive unit testing for security?
• A survey of 31 open-source developers in 2017 confirmed that code-

level security testing is seen as really effective but difficult to use.1

• An analysis of 525 StackOverflow posts in 2021 highlighted the
developer pain points in writing unit and integration tests for security,
mainly concerning the implementation rather than the design of tests.2

o Example: mocking the external components correctly or bypassing
authentication and authorization layers to test the protected components.

1P. Morrison, B. H. Smith, and L. Williams. 2017. Surveying Security Practice Adherence in Software Development. In Proceedings of the Hot Topics in Science of
Security: Symposium and Bootcamp (HoTSoS). https://doi.org/10.1145/3055305.3055312
2D. Gonzalez, P. Perez, and M. Mirakhorli. 2021. Barriers to Shift-Left Security: The Unique Pain Points of Writing Automated Tests Involving Security Controls. In
Proceedings of the 15th ACM/IEEE Int. Symp. on Empirical Software Engineering and Measurement (ESEM '21). https://doi.org/10.1145/3475716.3475786

Opportunity: Automated generation tools could relieve this burden!

https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786

58

Automated Code-level Security Testing (1/6)

Sudhodanan et al.1: Targets multi-party web applications (like
PayPal payment systems) by scanning the app with OWASP ZAP
and then building test cases on top of its findings to verify the
feasibility of certain attacks.

1A. Sudhodanan et al. “Attack Patterns for Black-Box Security Testing of Multi-Party Web Applications”. NDSS 2016.
2D. Corradini et al. “Automated Black-Box Testing of Mass Assignment Vulnerabilities in RESTful APIs”. ICSE 2023

Let’s start with approaches working at the system level (through API).

Corradini et al.2: Targets any RESTful APIs, creating test cases
that inject fields in server resources (through HTTPs) and
verifying whether a read-only field is overwritten (confirming
the presence of a mass assignment vulnerability).

59

Automated Code-level Security Testing (2/6)

Chaleshtari et al.3: Targets web applications endpoints, creating
test cases using 100+ pre-defined templates implementing
metamorphic relationships (MRs), which are converted into
executable Java code (using crawled URLs as entry points).

3N. B. Chaleshtari et al. “Metamorphic Testing for Web System Security”. In: IEEE Transactions on Software Engineering (2023)
4https://github.com/WebFuzzing/EvoMaster

Let’s start with approaches working at the system level (through API).

Honorable mention: EvoMaster2 generates random test cases for web apps through
their APIs (REST, GraphQL, and RPC) using genetic algorithms. Not security-specific.

Observation: They look like “special” vulnerability scanners. The difference
is that they can return reusable test cases rather than just a report.

60

Automated Code-level Security Testing (3/6)

Let’s see the most relevant approaches.

5E. Iannone, D. D. Nucci, A. Sabetta, and A. De Lucia. “Toward Automated Exploit Generation for Known Vulnerabilities in Open-Source Libraries”. In: 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC). 2021.

SIEGE5: Targets Java projects. It evolves a population of JUnit test cases
starting from any client class (with a genetic algorithm) with the goal of
producing one that reaches a specific vulnerable method in a dependency
(exact location given).
• Fitness function: based on the project full call graph (including

dependencies) and execution traces of the candidate test cases.
• Drawback: no assertions, only reachability tests!

At the unit level, there is not much around. There is a small trend in third-party
vulnerability testing, i.e., generating tests for an application that “imports” known
vulnerabilities through dependencies (libraries, frameworks).
• Goal: check if a vulnerability is exploitable from the client code rather than directly.

61

Automated Code-level Security Testing (4/6)

6H. J. Kang et al. “Test mimicry to assess the exploitability of library vulnerabilities”. ISSTA 2022.
7Z. Chen et al. “Exploiting Library Vulnerability via Migration Based Automating Test Generation”. ICSE 2024.

Transfer6: Given a known security test case belonging to the vulnerable
library, it creates an “equivalent” test (i.e., replicates the same program
state) that starts from the client code instead. Uses a genetic algorithm.
Vesta7: Similar to Transfer but instead of replicating program state of the
starting test case, it builds new tests using known exploits of the library
vulnerability (mined online) as test input data. Uses a genetic algorithm.
Both outperform SIEGE in the same set of known vulnerabilities.

Let’s see the most relevant approaches.

At the unit level, there is not much around. There is a small trend in third-party
vulnerability testing, i.e., generating tests for an application that “imports” known
vulnerabilities through dependencies (libraries, frameworks).
• Goal: check if a vulnerability is exploitable from the client code rather than directly.

62

Automated Code-level Security Testing (5/6)

We are looking for something working for “firsthand” code.

8M. Mohammadi et al. “Automatic Web Security Unit Testing: XSS Vulnerability Detection”. AST 2016.
9M. Mohammadi et al. “Detecting Cross-Site Scripting Vulnerabilities through Automated Unit Testing”. QSR 2017.

Mohammadi et al.8,9: Creates unit test cases for Java Server Pages to
discover XSS vulnerabilities. It runs a taint analysis on the JSP page and
generates test inputs using pre-defined XSS attack grammars. A test
confirms an XSS if the resulting HTML page displays a specific title.
• Drawback: Only for JSPs (not much unused today for web apps).

Limitation: Dependency testing cannot find new vulnerabilities!
• It can only confirm new ways to exploit a known vulnerability.
• It is more meant for risk assessment and dependency management.
• Very relevant, but it might not be what developers want.

63

Automated Code-level Security Testing (6/6)

We are looking for something working for “firsthand” code.

Limitation: Dependency testing cannot find new vulnerabilities!
• It can only confirm new ways to exploit a known vulnerability.
• It is more meant for risk assessment and dependency management.
• Very relevant, but it might not be what developers want.

10P. X. Mai et al. “A Natural Language Programming Approach for Requirements-Based Security Testing”. ISSRE 2018.
11P. X. Mai et al. “MCP: a security testing tool driven by requirements”. ICSE 2019.

Mai et al.10,11: Translates misuse cases into security test cases by
leveraging a pre-defined ontology and a string similarity search to select
the methods to invoke. The test assumes the vulnerability is discovered if
all the steps of the misuse case are reproduced.
• Drawback: Need well-defined misure cases (very unlikely).

Moral of the story: We need more automated generation techniques!

64

Automated Exploit Generation

65

Security Tests and Exploits
Another popular term in this domain is Vulnerability Exploitation.
What’s an exploit? Is it like a security test case?
Many definitions around (Cisco, TrendMicro, Rapid7, etc.). A convenience
definition: “any piece of software that takes advantage of one or more
vulnerabilities in an asset (e.g., an application) to cause harm.”
• Harm: Spawn a root shell, execute code remotely, steal credentials.

Exploit is a fluid concept: it ranges from malicious HTTP requests to armed
binaries (equipped with a payload) that might spawn a root shell.
The boundary with security tests is blurry. One possible distinction:
• Exploit goal: demonstrating that a vulnerability can be exploited to cause harm!
• Security test case goal: showing that the tested code has a vulnerability.

As far as what concerns us in this talk, it does not really matter.

66

Automated Exploit Generation
Often, Automated Exploit Generation (AEG) build on top of other security
testing approaches: static analysis, vulnerability scanners, fuzzing, etc.

Some noteworthy techniques are (not exhaustive):
• AEG1 for memory-related bugs in C/C++ code.
• FlowStitch2 for memory-related bugs in C/C++ code.
• FUGIO3 for Object Injection in PHP code.
• Chainsaw4 for SQLi and XSS in PHP code.
• EVIL5 for generating shellcodes (payload) for Linux IA-32 (Intel x86 32 bits).
• ExploitGen6 for generating shellcodes (payload) for Linux IA-32 (Intel x86 32 bits).
1T. Avgerinos et al. “AEG: Automatic Exploit Generation”. NDSS 2011.
2H. Hu et al. “Automatic generation of data-oriented exploits”. SEC 2015.
3S. Park et al. “FUGIO: Automatic Exploit Generation for PHP Object Injection Vulnerabilities”. USENIX Security 2022.
4A. Alhuzali et al. “Chainsaw: Chained Automated Workflow-based Exploit Generation”. CCS 2016.
5P. Liguori et al. “EVIL: Exploiting Software via Natural Language”. ISSRE 2021.
6G. Yang et al. “ExploitGen: Template-augmented exploit code generation based on CodeBERT”. JSS 2023.

67

Catalogs of Exploits
The de-facto standard of exploits is undoubtedly ExploitDB. The database
contains both proofs-of-concept and shellcodes.
• https://www.exploit-db.com/
• https://gitlab.com/exploit-database/exploitdb

Other catalogs (different levels of maturity):
• Metasploit (Rapid7 Vulnerability & Exploit Database): https://www.rapid7.com/db/?type=metasploit
• AttackerKB (by Rapid7): https://attackerkb.com/
• Symantec Attack Signatures: https://www.broadcom.com/support/security-center/attacksignatures
• Shell-Storm: https://shell-storm.org/shellcode/index.html
• CISA’s Known Exploited Vulnerabilities Catalog: https://www.cisa.gov/known-exploited-

vulnerabilities-catalog
• SecLists (archive of security mailing lists) https://seclists.org/
• Microsoft Security Advisories (up to 2018): https://learn.microsoft.com/en-us/security-

updates/securityadvisories/securityadvisories

https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://gitlab.com/exploit-database/exploitdb
https://gitlab.com/exploit-database/exploitdb
https://gitlab.com/exploit-database/exploitdb
https://gitlab.com/exploit-database/exploitdb
https://www.rapid7.com/db/?type=metasploit
https://attackerkb.com/
https://www.broadcom.com/support/security-center/attacksignatures
https://www.broadcom.com/support/security-center/attacksignatures
https://www.broadcom.com/support/security-center/attacksignatures
https://shell-storm.org/shellcode/index.html
https://shell-storm.org/shellcode/index.html
https://shell-storm.org/shellcode/index.html
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://seclists.org/
https://learn.microsoft.com/en-us/security-updates/securityadvisories/securityadvisories
https://learn.microsoft.com/en-us/security-updates/securityadvisories/securityadvisories
https://learn.microsoft.com/en-us/security-updates/securityadvisories/securityadvisories
https://learn.microsoft.com/en-us/security-updates/securityadvisories/securityadvisories
https://learn.microsoft.com/en-us/security-updates/securityadvisories/securityadvisories

68

Wrap-up

69

When Dynamic Testing Can Be Done

Analysis Design Implementation Deployment Maintenance

Code-level Testing

Pentesting

Vuln. Scanning

Fuzzing

VERY simplified model.

70

Usages of Security Tests and Exploits
Security tests and exploits can help:
• Find new vulnerabilities.
• Demonstrate the exploitability of vulnerabilities (proofs-of-concept).
• Assess their severity (exploits more than “simple” tests).
More interesting usages
• Localize commits that contributed to the introduction of

vulnerabilities. Security tests can triangulate the introduction moment.
o Currently, they’re based on static mining software repository methods.

• Validate the security patches generated with AI-based repair
approaches (Automatic Vulnerability Repair).
o Rather popular research trend nowadays.

71

Limitations and Open Challenges
Many open challenges
• A few solutions for 3rd code testing and almost no solutions for

“firsthand” code.
• No solutions for assessing the validity of generated tests/exploits.
• No empirical studies on the use of code-level security testing (how

much, why, …).
• No attention to regression testing and maintenance of tests/exploits.
• Lack of datasets to validate the proposed techniques.

Research on automated security testing is in its infancy.
Possible reason: It is often believed that vulnerability scanners and fuzzers are enough.

72

Security Testing… for the Cloud
From the developer’s perspective, API security in MSA applications is key.
• Top 10 API risks: https://owasp.org/API-Security/editions/2023/en/0x11-t10/
• Most issues are related to access control, as confirmed in the “issue taxonomy” by

Waseem et al. (followed by issues with encryption and secure communication).1

A survey of 106 developers confirms that much attention is given to
handling access tokens, but no security testing techniques are known.2

•Only a few exist (very recent): Micro-fuzz3, Wang et al.4, both based on fuzzing.

1M. Waseem et al. “On the Nature of Issues in Five Open Source Microservices Systems: An Empirical Study”. EASE 2021.
2M. Waseem et al. “Design, monitoring, and testing of microservices systems: The practitioners’ perspective”. JSS 2022.
3P. Di et al. “MicroFuzz: An Efficient Fuzzing Framework for Microservices”. ICSE-SEIP 2024
4W. Wang et al. “Zero-Config Fuzzing for Microservices”. ASE 2023.

Direction: More cloud-specific research is needed!
API testing is the road to take for the time being.

https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/

73

Further Readings
Survey studies
• A survey on the main families of security testing techniques by Felderer et al.: LINK
• Two surveys comparing the key characteristics of several existing security testing approaches by

Shahriar and Zulkernine: LINK, LINK
• Systematic Literature Review on search-based security testing with meta-heuristics by Ahsan and

Anwer: LINK
Empirical studies
• Comparison of the efficacy of different automated testing approaches (3 SAST, 2 DAST, 2 manual

testing) with a team of five researchers and 63 graduate-level students by Elder et al.: LINK
• Analysis of 481 instances of JUnit tests for Spring Security-based authentication functionalities from

53 open-source Java projects by Gonzales et al.: LINK
Third-party vulnerability testing
• An approach similar to Transfer but with ChatGPT by Zhang et al.: LINK
• Vuleut, another ChatGPT-based approach by Gao et al.: LINK

https://doi.org/10.1016/bs.adcom.2015.11.003
https://ieeexplore.ieee.org/document/5254085
https://dl.acm.org/doi/10.1145/2187671.2187673
https://doi.org/10.1007/s10515-024-00433-0
https://doi.org/10.1007/s10664-022-10179-6
https://doi.org/10.1145/3379597.3387471
https://arxiv.org/abs/2310.00710
https://arxiv.org/abs/2409.16701

74

74

Questions?

