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Abstract—Mainstream techniques for Automated Vulnerability
Repair (AVR) lean heavily on Large Language Models (LLMs)
and treat the vulnerability repair as a code translation task.
Yet, their effectiveness is limited due to the complex nature of
vulnerability fixes and, possibly, the lack of training datasets in
the Java programming language. On the other hand, template-
based Automated Program Repair (APR) remains a popular
way to fix general bugs. However, only a few approaches have
ever employed vulnerability-specific fix templates. This paper
introduces VULTERMINATOR, a novel repair approach for Java
vulnerabilities that leverages both heuristic-based and data-driven
fix templates. The former are specialized for certain vulnerability
types, such as XML External Entity (XXE) injection, which can
be more easily patched with predefined heuristics. The latter aim
to repair a broader class of vulnerabilities by generating common
patch templates with masks, which are later filled by a fine-tuned
Masked Language Model (MLM). In this paper, we introduce a
total of eleven fix templates distilled from real-world Java patches
and evaluate VULTERMINATOR on 106 vulnerabilities with test
cases from Vul4J+, as well as on 169 unseen vulnerabilities from a
newly curated dataset called Vul4JL. VULTERMINATOR achieves
the best overall repair performance, outperforming the state-of-
the-art approaches by 7% on Vul4J+ and 27% on Vul4JL, as
confirmed by manual inspection. VULTERMINATOR managed to
fix 10 vulnerabilities in Vul4J+ and 16 in Vul4JL that no other
approach could do, mainly due to the contribution of heuristic-
based templates.

Index Terms—Automated Vulnerability Repair, Automated
Program Repair, Large Language Models

I. INTRODUCTION

As of October 2025, the National Vulnerability Database
(NVD) has disclosed 37,998 new security vulnerabilities in the
year 2025 alone, accounting for 12.13% of the entire database.
Due to the large volume of new vulnerabilities emerging in
recent years, researchers have proposed Automated Vulnera-
bility Repair (AVR) approaches to help developers in fixing
software vulnerabilities [1], [2], [3], [4], [5], [6], [7], [8].
Modern techniques often leverage Large Language Models
(LLMs) to formulate the repair task as a sequence-to-sequence
code generation problem. Namely, they take the vulnerable
code as inputs along with additional pieces of information
(e.g., the CWE [4]) to generate the allegedly vulnerability-
free version. However, the performance of the current data-
hungry AVR approaches varies across different programming
languages, due to constraints related to the availability of large

and high-quality training datasets [9]. Indeed, most of them
focus on C/C++ programs, largely due to the availability of
vulnerability datasets like Big-Vul [10] and PrimeVul [11],
whereas only a few target other popular programming lan-
guages with less training data, such as Java [12], [7].

On the other hand, template-based Automated Program
Repair (APR) has been gaining ground, with numerous mature
techniques developed by the research community over the
last decade. Notably, TBar [13] is considered the baseline
for traditional template-based APR for Java general bugs. Re-
cently, researchers proposed new LLM-based APR approaches
guided by the fix templates, which significantly boost repair
performance in fixing general bugs [14], [15], [16]. From
a general perspective, these techniques first select the fix
templates to generate an intermediate patch, which is then fed
to transformer models in order to produce final patches via
either mask prediction or sequence-based transformation. Just
like bugs, vulnerabilities exhibit recurring fix patterns [17],
[18], which have the potential to be exploited for AVR.

Therefore, we propose a novel repair technique called VUL-
TERMINATOR, which employs both heuristic-based and data-
driven fix templates to repair Java vulnerabilities. The former
are specialized for certain vulnerability types, while the latter
aim to repair a broader class of vulnerabilities by generating
common patch templates with masks, which are later filled
in by a fine-tuned Masked Language Model (MLM). The
design of VULTERMINATOR is motivated by the existence of
recurring fix patterns observed in vulnerability patches, which
can simplify the repair process in several cases. This intuition
is illustrated by the motivating examples in Figure 1. CVE-
2017-5662 (an XXE vulnerability) is addressed by configuring
SAXParserFactory to disable its “external-general-entities”
and “external-parameter-entities” features. Common patches
for XXE vulnerabilities are often bound to specific Java
XML Processing APIs and can be generated using a set of
predefined heuristic-based fix templates. Instead, CVE-2013-
4378 (an XSS vulnerability) adds a call to the sanitizing
method htmlEncodeButNotSpace. Sanitization applies not
only to XSS but also to other types of vulnerabilities, such
as SQL Injection and Command Injection. In this case, data-
driven fix templates can be used to first generate the template
code with masks (e.g., <mask0>(remoteAddr) to signal



// Human patch of CVE-2017-5662 (XXE vulnerability)
try {
saxParser = saxFactory.newSAXParser();
parser = saxParser.getXMLReader();
...

+ parser.setFeature("http://xml.org/sax/features/" +
+ "external-general-entities", false);
+ parser.setFeature("http://xml.org/sax/features/" +
+ "external-parameter-entities", false);
catch (SAXException e) {

e.printStackTrace();
}

// Human patch of CVE-2013-4378 (XSS vulnerability)
- write(remoteAddr);
+ write(htmlEncodeButNotSpace(remoteAddr));

Fig. 1: Patches for CVE-2017-5662 and CVE-2013-4378.

that a sanitization method must be added). Then, a deep-
learning model is used to predict the concrete name of the
sanitization method via masked language modeling, leveraging
the vulnerability information and the surrounding context.

We defined eleven fix templates—six heuristic-based and
five data-driven—derived from the findings in the ExtraVul
dataset [17], and implemented them into VULTERMINATOR
to repair Java security vulnerabilities. The MLM that fills the
masks has been fine-tuned on a dataset of 4,147 change pattern
instances mined with the COMING tool [19] from 16,466 real-
world vulnerability patches. During the mask prediction, some
elements of the source code of the belonging project are also
provided in the model input, serving as additional contexts.

To evaluate the repair effectiveness of VULTERMINATOR,
we compare it with five state-of-the-art APR and AVR tech-
niques, as well as two leading LLMs widely used in pro-
gram repair studies, on 106 real-world Java vulnerabilities
with available vulnerability-witnessing tests (a.k.a. Proof-of-
Vulnerability tests) from the Vul4J+ dataset [20], which is an
extension of the popular Vul4J dataset [21]. The candidate
patches are evaluated against the existing project test suite,
which includes vulnerability-witnessing tests that confirm the
removal of the vulnerability. The plausible patches were also
manually verified to ascertain correctness. Then, to assess
the generalizability of VULTERMINATOR, we also perform an
extended evaluation on Vul4JL, a dataset of 169 vulnerabilities
that we prepared in this study. The experimental results indi-
cate that VULTERMINATOR achieves the best vulnerability re-
pair performance in both datasets, correctly fixing 31 vulnera-
bilities in Vul4J+ and 47 in Vul4JL. This outperforms the best-
performing baseline (Gemini-2.5 Pro) by 6.9% and 27.02%,
respectively. During further investigations, we found that the
heuristic-based templates have the greatest impact on the
success of VULTERMINATOR. Although data-driven templates
generally contributed less than heuristic-based ones, several
of them demonstrate great repair effectiveness on Vul4JL.
For example, the data-driven fix template SanitizeInput repairs
2.5× more vulnerabilities in Vul4JL than in Vul4J+.

In summary, the paper makes the following contributions:

• Novel AVR Technique. We introduce VULTERMINATOR,
a novel technique that leverages both heuristic-based and
data-driven fix templates to repair Java vulnerabilities.

The latter are aided by a deep-learning model to fill
missing parts in the generated patches.

• New Vulnerability Fix Dataset. We collect a new dataset
of 16,466 Java vulnerability-fixing commits (containing
62,286 source file pairs), which is curated from open-
source repositories on GitHub.

• Extensive Evaluation. We conduct extensive evaluations
of our proposed approach and the baselines on two
datasets: Vul4J+, containing 106 vulnerabilities with
runnable vulnerability-witnessing tests, and Vul4JL, con-
taining 169 vulnerabilities that are not seen by fix tem-
plates. We also perform an investigation to reveal the
contributions of individual fix templates to the overall
repair effectiveness of VULTERMINATOR.

II. VULTERMINATOR

A. Overview

In this section, we present VULTERMINATOR, a novel
repair technique for Java vulnerabilities that leverages both
heuristic-based and data-driven fix templates. A heuristic-
based fix template consists of a set of predefined transform
rules at the abstract syntax tree (AST) level that patch the
vulnerable code. A data-driven fix template, instead, consists
of an intermediate representation (i.e., the template code) of
the intended patch and contains masks, which are later filled
using a large language model (LLM). The code tokens that the
model generates for these masks are called fix ingredients—
e.g., a method name or a conditional expression.

The main workflow of VULTERMINATOR is depicted in
Figure 2. VULTERMINATOR accepts as inputs the source code
of the vulnerable project and vulnerability information, such
as vulnerable locations and the CWE ID (if available). First,
in the Fix Template Selection step (detailed in Section II-D),
the project’s source code is transformed into ASTs, on which
the vulnerable ASTs are identified. Then VULTERMINATOR
selects the suitable heuristic-based and data-driven templates
for the vulnerable ASTs from the fix template database (see
Section II-D). Next, during the Patch Generation (detailed
in Section II-E), the selected fix templates perform the code
mutations to generate the patch candidates. Finally, the gener-
ated patch candidates are validated by the set of vulnerability-
witnessing tests and the regression test suite in the Patch
Validation phase (detailed in Section II-F).

In this work, we identified a total of eleven fix templates
for common Java security vulnerabilities and implemented
them in VULTERMINATOR. The templates formalize the repair
patterns previously mined from the ExtraVul dataset [17]. In
total, we designed six heuristic-based templates and five data-
driven templates. Some of which have variants, i.e., ways to
implement the template, as described in Sections II-B and II-C.

B. Heuristic-based Fix Templates

FT1. Prevent XXE Vulnerabilities. XML External Entity
(XXE) injection vulnerabilities (CWE-611) are usually caused
by an XML parser that is not properly configured. This vul-
nerability type is rather popular among the Java open-source
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Fig. 2: Overall workflow of VULTERMINATOR.

projects [17]. Nevertheless, it is relatively easy to address by
configuring the XML parsers to disallow custom document
type definitions (DTDs). Following the guidelines by OWASP
XXE Prevention Cheatsheet [22], VULTERMINATOR supports
three variants of fixes for six common XML parsers in Java.
The following code snippet shows the three possible fixes
when DocumentBuilderFactory is used. While FT1.1 is
considered the main defense by disallowing all DTDs, FT1.2
and FT1.3, or the combination of them, offer more flexibility
by disabling only external entities and external DTDs, allowing
internal DTDs to be loaded if required. Due to space con-
straints, the list applied for other kinds of XML parsers is
provided in the replication package [23].
DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();↪→
+ try {
FT1.1: + dbf.setFeature("...disallow-doctype-decl", true);
FT1.2: + dbf.setFeature("...general-entities", false);

+ dbf.setFeature("...parameter-entities", false);
FT1.3: + dbf.setFeature("...load-external-dtd", false);
+ } catch (ParserConfigurationException e) {/* Handling */}

FT2. Instantiate Secure Random Generator. Standard
Pseudo-Random Number Generators (PRNGs), such as
java.util.Random, rely on statistical algorithms to gen-
erate the next number, which is predictable. A simple solu-
tion is to use a cryptographic PRNG algorithm, such as in
java.security.SecureRandom instead. This ensures the
output generated is cryptographically secure and impossible
to guess.
- Random ran = new Random();
+ Random ran = new SecureRandom();

FT3. Instantiate SnakeYaml Parser with Secure Con-
figuration. SnakeYaml is a Java library widely used for
parsing data stored in YAML files. When instantiated with
the default configuration, a SnakeYAML parser is vulnerable
to Deserialization of Untrusted Data (CWE-502). In par-
ticular, it allows the instantiation of arbitrary classes from
untrusted YAML sources, which can lead to Remote Code
Execution attacks. This critical vulnerability in SnakeYaml is
officially disclosed via the CVE-2022-1471 [24]. To resolve
this, the SafeConstructor class can be used to disable the
deserialization of any class. We defined two variants of the
fix templates: If no argument is passed to the parser con-
structor, FT3.1 adds new SafeConstructor(), otherwise,

FT3.2 analyzes the given arguments options and possibly
instantiates extra required arguments such as Representer

and DumperOptions to fit the correct parser constructor.
FT3.1: - Yaml yaml = new Yaml();

+ Yaml yaml = new Yaml(new SafeConstructor());
FT3.2: - Yaml yaml = new Yaml(options);

+ Yaml yaml = new Yaml(new SafeConstructor(),
arg1, arg2,..., options);

FT4. Prevent Path Traversal Vulnerabilities. Path traversal
vulnerabilities (CWE-22) are caused by an insufficient valida-
tion of untrusted input, which allows an attacker to access or
write to arbitrary files or directories on the file system. We
defined three variants for fixing this. For full path traversal,
FT4.1 can be used to reject file names input containing bad
characters, i.e., the two dots “..”, and the slashes “/”, “\”.
For partial traversal, FT4.2 ensures the newly created file path
always begins with the base directory’s path. Note that the
paths need to be normalized and validated using the proper
Java File API. Specifically, the method getCanonicalPath,
which was widely used to detect path traversal, is no longer
considered sufficient—as shown in CVE-2022-31159 [25].
This check should be done via the new Path API from the Java
NIO package, such as toPath().normalize() instead. The
fix template FT4.3 helps improve deprecated fixes that rely
on getCanonicalPath.
// Full Path Traversal
File file = new File(name);
FT4.1: + if (name.contains("..") || name.contains("/")

+ || name.contains("\\")) {
+ throw new IOException("Vul Prevented!");
+ }

// Partial Path Traversal
File file = new File(dir, name);
FT4.2: + if (!file.toPath().normalize()

+ .startsWith(dir.toPath().normalize())) {
+ throw new IOException("Vul Prevented!");
+ }

FT4.3: - if (!file.getCanonicalPath()
- .startsWith(dir.getCanonicalPath())) {
+ if (!file.toPath().normalize()
+ .startsWith(dir.toPath().normalize())) {
+ throw new IOException("Vul Prevented!");
+ }

FT5. Prevent Insecure Temporary File Creation. By default,
the use of File.createTempFile to create temporary files
is insecure in many Linux/Unix systems [26]. Indeed, the
temporary file is created in the shared directory /tmp with
default access permissions that are world-readable, allowing



unauthorized parties to access sensitive data. It is recom-
mended to use the Files.createTempFile from the Java
NIO package to create temporary files with more restrictive
access permissions [27].
- File tempFile = File.createTempFile(prefix, suffix);
+ File tempFile = Files.createTempFile(prefix,

suffix).toFile();↪→

FT6. Prevent the Exposure of Sensitive Data. In many
cases, sensitive data is exposed to unauthorized parties. This is
caused either accidentally by developers during the debugging
process or by a lack of proper authentication checks. To
mitigate this vulnerability, FT6.1 and FT6.2 remove sensitive
data from being written to the public endpoints of WebUI,
API, or Logging System (e.g., rsp.getWriter().write(),
logger.info()).
// public_writer() writes to public or to logs
FT6.1: - public_writer(var1 + sen_data + var2 +...);

+ public_writer(var1 + var2 +...);
FT6.2: - public_writer(sen_data1 + sen_data2 +...);

C. Data-driven Fix Templates

In contrast to heuristic-based templates, which target spe-
cific vulnerability types caused by improper use of Java APIs
(e.g., XML parsers and XXE), data-driven fix templates are
more generic and can address a broader range of vulnera-
bilities. However, this also results in a large search space
when it comes to selecting the right fix ingredients, e.g., due
to the variety of libraries and frameworks that can be used
in projects. To address this, we used a Masked Language
Model (MLM) model to assist in identifying the correct fix
ingredients for the templates.

Table I summarizes our five data-driven fix templates. FT7
sanitizes untrusted inputs to help mitigate injection vulnera-
bilities such as Cross-Site Scripting and SQL Injection, FT8
breaks the infinite loop that can lead to Denial-of-Service
attacks, and FT9 adds checks to ensure code execution occurs
under proper permissions. The last two templates (FT10 and
FT11) are commonly used in both vulnerability and general
bug fixes [17], [28]. They prevent the program execution from
reaching a vulnerable state by throwing exceptions or returning
errors. For each fix template, the “Template Code” column
in Table I shows the fixed code with masks. Some templates
may have two masks, for example, FT10 uses <mask0> as
a placeholder for the precondition expression and <mask1>
for the thrown exception type. The “Fix Ingredients” column
shows the potential fix ingredients and the scopes where they
are retrieved. These fix ingredients are added to the MLM’s
input through in-line comments to guide the model in sampling
the right tokens. For example, since FT7.1 aims to sanitize un-
trusted inputs (mostly stored as String), VULTERMINATOR
retrieves all the string-handling methods that are static and
exist in the codebase and libraries as potential ingredients. We
did not constrain the MLM to forcefully select an ingredient
from the suggested list, as that list may be incomplete.

To build a model capable of predicting fix ingredients, we
first construct a dataset of Java vulnerability fixes that fit the
templates in Table I. We then replace the key code components

corresponding to each fix template with masks and fine-tune
a pre-trained Masked Language Model to predict them as
target fix ingredients. We selected UNIXCODER [29] for a
handful of reasons: (1) UniXCoder was pre-trained of several
programming languages, including Java, (2) it has been pre-
trained with an MLM task, making it ideal for our case; and
(3) it has demonstrated strong capabilities in the program
repair domain [14], [30], [31], making it promising also for
the vulnerability repair task as well.
Dataset of Vulnerability Fixes. We searched vulnerability-
fixing commits in popular Java repositories on GitHub using
a set of vulnerability- and patch-related keywords. We fol-
lowed these steps: Step 1. We used SEART GitHub Search
Engine [32] to obtain the most popular Java projects on
GitHub. We set our search criteria as: (i) the repository
must contain Java code, (ii) it should have at least 1,000
commits and at least 100 stars, and (iii) its most recent
commit should fall between January 1st, 2014, and June 30,
2025. We ended up with 3,322 repositories that met these
criteria. Step 2. We then downloaded all the repositories
and used git-vuln-finder [33], a lightweight tool that
finds vulnerability-relevant commits based on matching the
commit messages to predefined security-related keywords pro-
posed by Zhou et al. [34]. We obtained 96,058 security-
related commits. Step 3. Next, we retained only the commits
whose message started with vulnerability-fixing verbs, e.g.,
fix, prevent, disallow, validate (the full list can be found in
our replication package [23]). The set of verbs was extracted
from the commit messages in Project KB [35], which is a
dataset of curated Java vulnerability fixes. Then, we discarded
the commits that: (i) were related to Android and Games;
(ii) contained javadoc, typo, and lint in their messages, as
these commits do not fix any vulnerabilities but, rather, only
change comments and typos; and (iii) existed in our testing
datasets (see Section III-A) to avoid overfitting. After this
process, 16,466 commits were selected. Step 4. We analyzed
the changes in the commits and retained only those related
to Java source files. We stored both the vulnerable and fixed
versions for each file. In total, we end up with 62,286 Java
file pairs. Step 5. We used the COMING tool [19] to mine
the fix template instances from the file pairs. We specified
the eight variants for our five data-driven fix templates via
XML files, as required by COMING. For a file pair, only
the fix templates corresponding to the keywords previously
matched by git-vuln-finder in the their belong commit
are mined (e.g., if “xss” is matched in the commit message,
then only FT7 is mined, the full mapping list is provided
in our replication package [23]). Ultimately, we collected
4,147 repair instances (COMING’s specific format) that are
representative of our data-driven fix templates.
Model Fine-tuning. We prepared the input for fine-tuning
the UNIXCODER model. Given each repair instance obtained
by COMING, we obtain information about the matched fix
template, and the corresponding code change found in the
vulnerability patch, along with its method. Similar to exist-
ing LLM-based repair works [14], [16], [34], we treat the



TABLE I: List of Data-driven Fix Templates.

ID Template Name Fix Ingredients Template Code

FT7 SANITIZEINPUT mask0: Static method takes a
String as a parameter and returns
a String
Scope: Project and External Libs

FT7.1: - method(unstrusted_input);
+ method(<mask0>(unstrusted_input));

FT7.2: - method(unstrusted_input);
+ method(unstrusted_input.<mask0>());

FT8 BREAKINFINITELOOP mask0: Atomic Conditional Expr.
Scope: Current File, Related Files

FT8.1: + break;
FT8.2: + if (<mask0>) {

+ break;
+ }

FT9 CHECKPERMISSION mask0: Method Calls
mask1: Atomic Conditional Expr.
Scope: Current File, Related Files

FT9.1: + <mask0>();
FT9.2: + if (<mask1>) {

+ <mask0>();
+ }

FT10 ADDIF_THROW mask0: Atomic Conditional Expr.
mask1: Declared Exception Types
Scope: Current File, Related Files

+ if (<mask0>) {
+ throw new <mask1>("Vul prevented!");
+ }

FT11 ADDIF_RETURN mask0: Atomic Conditional Expr.
mask1: Variable Names, false, -1
Scope: Current File, Related Files

+ if (<mask0>) {
+ return <mask1>;
+ }

whole method code as the main source input for the model.
Depending on the fix template, we mask out the code tokens
at specific locations to generate code templates. We set the
masked tokens as the ground truth fix ingredients that the
model is expected to generate. Moreover, the model is given an
additional piece of information, i.e., potential fix ingredients
mined from the project hosting the vulnerable method (see
Table I). This aims to address a common issue of transformer
models in program repair, i.e., the tendency to generate patches
that are not customized for the project codebase, as reported in
a recent study [36]. For example, the fix may introduce a new
method call for input sanitization that does not exist in the
codebase, causing compilation errors. Providing the relevant
code tokens in the input can help the model to prioritize
and reuse them, hence generating codebase-friendly patches.
We extend the model’s special tokens to include <mask0>
and <mask1> to prevent the masks from being split during
tokenization (performed using Byte Pair Encoding). Figure 3
shows an entry of our fine-tuning dataset.

// ----------- Source -----------
// FIX_TEMPLATE: SanitizeInput
// FIX_INGREDIENTS: HTMLUtils decodeString urlEncode

escapeHtml trimWhitespace getStringForJS...↪→
private void writeSession(String input) {
write(<mask0>(input));

}
// ----------- Target -----------
<mask0>HTMLUtils.escapeHtml

Fig. 3: Input example given to the model for fine-tuning.

We fine-tune the model with 30 epochs and set the learning
rate as 5e−5. We use cross-entropy loss for fine-tuning and
also employ a validation set (10% of the dataset) to check
the model’s performance after each epoch. We select the
checkpoint with the highest BLEU score [37].

D. Fix Template Selection
For the given vulnerable ASTs, VULTERMINATOR checks

the most suitable fix templates from the fix template database.

Similar to TBar [13] and GAMMA [14], VULTERMINATOR
adopts an AST matching approach. Specifically, for each fix
template, VULTERMINATOR checks if the required context for
the fix template (e.g., node type) matches the existing context
in the vulnerable ASTs to determine if the fix template should
be selected. For example, if the vulnerability is located within
a loop (e.g., parent AST node type is WhileStatement),
the fix template FT8 (BreakInfiniteLoop) should be applied
to address the potential infinite loop vulnerabilities. Multiple
fix templates may be applicable to the same vulnerable AST;
in such cases, the selection is determined by their precedence
within the fix template database. Moreover, if the vulnerability
type (i.e., CWE-ID) is available, VULTERMINATOR prioritizes
the corresponding fix template for that vulnerability type
during template selection. For example, if the vulnerability
type is given as CWE-611, the fix template FT1 (Prevent XXE
Vulnerabilities) will be prioritized in the first place to generate
XXE patches. This strategy helps VULTERMINATOR produce
the correct patches more quickly by selecting the proper fix
template.

Template Selection for Multi-location Vulnerability. VUL-
TERMINATOR can also fix vulnerabilities that require similar
fixes in multiple locations. This is based on the nature of some
vulnerability fixes where developers try to fix the same vulner-
ability in multiple places [38], such as in the patch of CVE-
2017-1000207 [39]). To this end, we first utilize the SRC2ABS
tool [40] to abstract the code at vulnerable locations, then
rebuild the vulnerable ASTs and run Algorithm 1 to compute
their similarities. Specifically, we count how many nodes in the
left-hand side AST have the same types as their corresponding
nodes in the right-hand side AST (the node name is also
taken into account if the node is a MethodInvocation). The
resulting count is then normalized to a similarity score ranging
from 0 to 1. We consider two ASTs similar if they have their
similarity score is equal to or greater than a threshold of 0.9.



Algorithm 1: Similarity Computation for ASTs
Input : A pair of AST nodes (N1, N2)
Output: Normalized similarity score in range [0, 1]

Function computeSimilarity(N1, N2)
score,maxScore← 0;
minHeight← min(N1.height,N2.height);
maxScore← maxScore+minHeight;
if N1.type = N2.type then

score← score+minHeight;

if N1.isLeaf() ∧N2.isLeaf() ∨N1.type =
MethodInvocation ∧N1.type = N2.type then

maxScore← maxScore+minHeight;
if N1.name = N2.name then

score← score+minHeight;

else if N1.isNonLeaf() ∧N2.isNonLeaf() then
for i← 0 to minChildrenSize(N1, N2) do

computeSimilarity(N1.child[i], N2.child[i]);

return score/maxScore;

E. Patch Generation

VULTERMINATOR applies the selected templates to gener-
ate patch candidates on the vulnerable locations. During the
patch generation phase, heuristic-based templates traverse the
ASTs of the given vulnerable statements to find suspicious
code expressions (e.g., the new SnakeYaml() object instan-
tiation expression in FT3). They then apply the predefined set
of code mutations on these code components to generate the
concrete patch candidates. The ingredients used for synthe-
sizing the patches are usually collected from the vulnerable
statements themselves. Instead, data-driven templates require
a more complex process to generate patches. First, these
templates are used to add the masked tokens to the vulnerable
method. The masked code is extracted along with its context
method, and then the whole method is fed as the input to the
model. VULTERMINATOR also adds the fix template name and
potential ingredient list at the beginning of the model input
in a comment (akin to Figure 3). The list of fix ingredients
retrieved varies according to the selected fix template (see
Table I). VULTERMINATOR employs the beam search strategy
to generate values for the masked tokens. Specifically, the
beam size parameter N is set to predict the top-N code tokens
with the highest probabilities. They are later integrated into
the code template to generate patch candidates, which are
subsequently validated for correctness.

F. Patch Validation

To validate the patches, VULTERMINATOR follows the
common workflow used in existing APR and AVR studies to
evaluate the generated patches [17], [41], [42]. In particular,
for each patch candidate generated by the fix templates,
VULTERMINATOR first attempts to install the patch into the
originating project and then recompiles it to quickly filter
out candidate patches that cause compilation errors. If the
compilation succeeds, VULTERMINATOR runs any available
vulnerability-witnessing tests and the whole test suite. The
patches that pass all the tests are said to be plausible and

are ultimately returned. In our study, the plausible patches
undergo an additional, manual correctness assessment (see
Section III-C).

III. VALIDATION METHODOLOGY

To evaluate VULTERMINATOR’s effectiveness in repairing
vulnerabilities, we formulate the following research questions:

• RQ1: How well does VULTERMINATOR fix Java vulner-
abilities compared to the state-of-the-art AVR and APR
approaches?

• RQ2: How does VULTERMINATOR perform in fixing
vulnerabilities of different types?

• RQ3: To what extent are the vulnerabilities fixed by VUL-
TERMINATOR unique compared to the state-of-the-art
AVR and APR approaches?

• RQ4: How does each fix template contribute to the overall
repair performance of VULTERMINATOR?

A. Evaluation Datasets

To evaluate the repair performance of VULTERMINA-
TOR, we first use 106 real-world vulnerabilities with the
reproducible vulnerability-witnessing tests (a.k.a. Proof-of-
Vulnerability test) from the Vul4J+ dataset [20]. The tests
serve as an automated oracle to assess the plausibility of patch
candidates generated by the repair tools. Each vulnerability in
Vul4J+ has one or more associated witnessing tests. Vul4J+
is an extended version of the original Vul4J dataset (that
contained 79 vulnerabilities), which has been widely used in
AVR studies since its release [17], [4], [43], [16], [36]. To the
best of our knowledge, Vul4J+ is the dataset with the largest
number of reproducible real-world Java vulnerabilities to date.

The fix templates employed by VULTERMINATOR have
been extracted from the ExtraVul dataset [17], which, like
Vul4J+, is also related to Vul4J. This means that the templates
might have an advantage for some of the vulnerabilities in
Vul4J+. Therefore, we created a new dataset, called Vul4JL,
which contains vulnerabilities “unseen” by our fix templates.
To this end, we followed the methodology described in the
original Vul4J paper [21] to collect new Java vulnerabilities
from REEF [44] and ReposVul [45] datasets (however, we
did not create the vulnerability-witnessing tests, as discussed
later in Section III-C). We then excluded the vulnerabilities
that are also present in Vul4J+ and ExtraVul, as well as those
whose patches modified more than seven lines—as they are
likely to contain changes irrelevant to the fix. As a result,
Vul4JL contains 169 real-world vulnerabilities, mostly con-
taining vulnerabilities disclosed between 2019 and 2023. The
size of VuL4JL is comparable to those used in the literature
for Java vulnerability repair. Indeed, the largest Java dataset
employed so far contains 150 mutated vulnerabilities derived
from 50 original vulnerabilities [43].

B. Baselines

We compared our approach against the state-of-the-art APR
and AVR techniques, as well as the leading LLMs. We selected
three APR tools: TBar [13], GAMMA [14], and NTR [16].



TBar is a template-based approach for traditional APR tech-
niques that achieves the best performance in repairing Java
vulnerabilities [17]. GAMMA and NTR are recent state-of-the-
art learning-based APR approaches guided by fix templates.
Moreover, we selected two LLMs that are widely used in
program repair studies [46], [47], [48], i.e., GPT-4o [49] and
Gemini-2.5 Pro [50]. GPT-4o is the successor of Codex—
the best-performing LLM for repairing Java vulnerabilities as
reported in a recent study [43], while Gemini-2.5 Pro [50]
is the leading LLM excelling at complex reasoning and
coding tasks. Additionally, we also involved two state-of-the-
art repair techniques specialized for fixing Java vulnerabilities,
i.e., VulRepairNTR [16] (a replicated version of the original
VulRepair [2] by Huang et al. [16]) and VulMaster [4].
Unfortunately, we were unable to execute them on our datasets
due to the lack of runnable artifacts for their experiments
on Java code. The best we could do was to extract the
repair performance reported in previous studies [4], [16]. Such
performance originates from a dataset of 35 single-hunk Java
vulnerabilities, which is also a subset of Vul4J+. In total, we
compare VULTERMINATOR against five different repair tools
(three of which are reproducible) and two LLMs.

The tools and models were run under perfect fault local-
ization, i.e., the exact vulnerable locations are provided in
the input code to repair. This is the preferred setting among
APR and AVR studies since it eliminates biases introduced by
differences in fault localization across techniques [51], [43],
[17]. Moreover, the the CWE ID and name are also provided
to the tools that can accept it. In our case, this applied to
GPT-4o and Gemini-2.5 Pro prompts.

We ran GAMMA and NTR with a beam size of 100, which
is similar to the number used in their original studies [14], [16].
Note that the number of patch candidates can be much larger.
For example, NTR employs ten fix templates and generates
100 patches for each template, resulting in a total of 1,000
patches. Due to computational costs, we queried GPT-4o and
Gemini-2.5 Pro ten times with the same prompt to generate
ten patches for each vulnerability (the prompt template is
reported in our replication package [23]). To make a fair
comparison with all the baselines, we set the beam size for
VULTERMINATOR to 10.

C. Evaluation Protocol

We use two common metrics used in APR studies [42],
[41], i.e., the number of correct patches and the number of
plausible patches. For Vul4J+, we let the tools generate all
the patches, then run the vulnerability-witnessing tests and
the whole test suite against the patches until we find the
first plausible patches that pass all tests. We then manually
inspect these patches to identify those that correctly fix the
vulnerabilities while preserving the project’s functionalities.
For Vul4JL, since no tests are available to screen the generated
patches, we cannot assess the plausibility. We acknowledge
that the exact match metric [2] is often used to evaluate
generated patches statically. However, it primarily relies on
syntactic similarity and may miss the semantically correct

patches that have different syntax compared to the ground
truth. Therefore, we resorted to manual inspection once more.
However, in the context of this study, it was not feasible
to inspect all generated candidate patches due to their large
number—for example, NTR can produce up to 1,000 patches
for a single vulnerability. Therefore, we selected only the first
three patches yielded by each tool. In total, we assessed the
correctness for 169×6×3 = 3,042 patches. Supported by the
related work, we argue that considering only the top three fix
suggestions is reasonable in practice [52]. We acknowledge
that this choice may affect the performance of some tools,
including our own VULTERMINATOR, but it ensures that all
techniques are treated equally in this study.

IV. EVALUATION RESULTS

A. RQ1: General Repair Effectiveness

Since we have repair results from VulMaster and
VulRepairNTR only for 35 single-hunk vulnerabilities from
Vul4J+, we first show the results of all the evaluated tech-
niques solely on this subset. This is summarized in Table II.
Overall, we observe that VULTERMINATOR (17 successful
repairs) outperforms LLMs (up to 15 repairs), which in turn
outperform state-of-the-art repair tools (up to 11 repairs).
VULTERMINATOR also performs better than the other tools
that specialize in vulnerability repair.

Table III shows the repair results on the whole Vul4J+ and
Vul4JL datasets (including multi-hunk vulnerabilities) for the
approaches that we could re-run. On the Vul4J+ dataset, VUL-
TERMINATOR outperforms all the baselines with 31 correctly
fixed vulnerabilities (90.6% success rate). Performance-wise,
LLMs represent the second tier, while TBar and GAMMA
remain as the lower performers, which is not surprising as
these tools ar not specialized for vulnerabilities.

On Vul4JL, the number of plausible patches is not reported
since there are no vulnerability-witnessing tests. Overall, we
observed the same trend as for Vul4J+. Specifically, VUL-
TERMINATOR achieves the best repair performance with 47
correctly fixed (28% success rate). Gemini-2.5 Pro and GPT-
4o follow with 37 (22%) and 28 (17%) vulnerabilities fixed.

Figures 4 and 5 report two vulnerabilities from Vul4JL
that only VULTERMINATOR was able to fix correctly, con-
cerning CVE-2019-10077 (an XSS vulnerability) and CVE-
2022-4878 (a path traversal vulnerability), respectively. In both
of the examples, we observe that the patches made by GPT-
4o and Gemini-2.5 Pro understand the vulnerability context,
however, they fail to complete the fixes or generated obsolete
patches. In particular, for the XSS vulnerability, they suggest
invoking the escapeHtml and TextUtil.encodeForHTML,
which are not present in the codebase. On the other hand,
VULTERMINATOR suggests a set of fix ingredients retrieved
from the affected project, and then UniXcoder model (the
masked language model) chooses the right one, which is
TextUtil.escapeHTMLEntities. For the path traversal
vulnerability, the patches generated by these LLMs are deemed
insecure (see FT4 in Section II-B for details), whereas our tool
leverages up-to-date knowledge to produce a secure fix.



TABLE II: Repair results on 35 single-hunk vulnerabilities (a subset of Vul4J+).
∗The repair results of VulMaster and VulRepairNTR are extracted from previous works [4], [16].

Tools/Models
Template-guided APR SOTA AVR LLMs Our Tool

TBar GAMMA NTR VulMaster VulRepairNTR GPT-4o Gemini-2.5 Pro VULTERMINATOR

#Correct/#Plausible 5/8 6/9 11/14 9/-∗ 4/10∗ 13/14 15/17 17/19

TABLE III: Repair results on the Vul4J+ and Vul4JL datasets.

Tools/Models
Vul4J+ (106 Vulns) Vul4JL (169 Vulns)

#Correct/#Plausible #Correct

TBar 5/11 1
GAMMA 6/10 2
NTR 16/20 7

GPT-4o 17/22 28
Gemini-2.5 Pro 29/32 37

VULTERMINATOR 31/35 47

// GPT-4o's patch
- Object[] args = { extWiki };
+ Object[] args = { escapeHtml(extWiki) };

// Gemini-2.5 Pro's patch
- Object[] args = { extWiki };
+ Object[] args = { TextUtil.encodeForHTML(extWiki) };

// VulTerminator's patch, identical to developer's patch
- Object[] args = { extWiki };
+ Object[] args = { TextUtil.escapeHTMLEntities(extWiki) };

Fig. 4: Patches generated for CVE-2019-10077.

B. RQ2: Repair Effectiveness by Vulnerability Type

We performed a further investigation into the vulnerability
types (CWE) that can be fixed by VULTERMINATOR. To this
end, as shown in Table IV, we zoom into the top ten most
frequent CWEs in Vul4JL and show the proportion of correct
repairs for VULTERMINATOR, GPT-4o and Gemini-2.5 Pro
(the best performing approaches). Nine out of ten vulnerability
categories also appear in the latest OWASP Top 10 Web
Application Security Risks (2021) [53], which represent the
most common and impactful web-based vulnerability types
in practice. This shows how the Vul4JL dataset reflects Java
vulnerabilities in the real world reasonably well.

Overall, VULTERMINATOR was able to fix 36.46% of
the top ten vulnerability types Vul4JL, while GPT-4o and
Gemini-2.5 Pro fixed 13.54% and 22.92%, respectively. In
particular, we find that VULTERMINATOR stand out for CWE-
22 (Path Traversal) and CWE-611 (XXE), with high success
rates of 68.75% and 81.75%, respectively. In these categories,
GPT-4o and Gemini-2.5 Pro are outperformed by a wide
margin. VULTERMINATOR demonstrates comparable repair
performance with the LLMs for CWE-79, CWE-502, and
CWE-918; however, it also shows inferior performance for
CWE-89 and CWE-203—though these types only had a few
vulnerabilities. From a broader perspective, we can see that
the LLMs have a more balanced repair performance across
the top ten CWEs.

// Developer's patch
+ destDir = destDir.toPath().normalize().toFile();

// Patch generated by GPT-4o and Gemini-2.5 Pro
+ String destDirPath = destDir.getCanonicalPath();
+ String destFilePath = file.getCanonicalPath();
+ if (!destFilePath().startsWith(destDirPath)) {
+ throw new IOException("Exception message");
+ }

// VulTerminator's patch, correctly fix the vulnerability
+ if (!file.toPath().normalize()
+ .startsWith(destDir.toPath().normalize())) {
+ throw new IOException("Exception message");
+ }

Fig. 5: Patches generated for CVE-2022-4878.

(a) In Vul4J+ (106 Vuls) (b) In Vul4JL (169 Vuls)

Fig. 6: Overlaps of vulnerabilities fixed by different ap-
proaches.

C. RQ3: Analysis of Complementarity

To investigate the extent to which VULTERMINATOR com-
plements the existing repair approaches (i.e., its degree of
uniqueness), we calculate the number of overlapping fixed
vulnerabilities in Vul4J+ and Vul4L. Figure 6 shows the
overlaps with Venn diagrams. For the sake of readability, we
report only the overlap between VULTERMINATOR and the
four best repair approaches, i.e., GAMMA, NTR, GPT-4o,
and Gemini-2.5 Pro. The figure shows that VULTERMINATOR
was able to fix the largest number of unique vulnerabilities
in both datasets, i.e., 10 in Vul4J+ and 16 in Vul4JL.
The runner-up was Gemini-2.5 Pro, which uniquely fixes 8
vulnerabilities in Vul4J+ and 6 in Vul4JL. GPT-4o repairs 5
unique vulnerabilities in Vul4JL and none in Vul4J+. NTR has
1 unique vulnerability per dataset, while GAMMA has none.

In Figure 7, we further analyzed the overlapping fixed
vulnerabilities by focusing on VULTERMINATOR, Gemini-2.5
Pro, and GPT-4o. In particular, we broke down the type of
fix templates (heuristic-based vs. data-driven) that VULTER-
MINATOR employed to repair the vulnerabilities. This helped
to understand which part of VULTERMINATOR contributed to
its complementarity with other approaches. The figure shows



TABLE IV: Repair performance on different types of vulnerabilities in the Vul4JL dataset.
The CWEs are ranked according to their frequency in the dataset. OWASP10∗ denotes whether the CWE is listed in the ten most critical Web
Application Security Risks for 2021, as published by OWASP [53].

Rank CWE ID CWE Name Count OWASP10∗ GPT-4o Gemini-2.5 Pro VULTERMINATOR

1 CWE-79 Cross-site Scripting (XSS) 20 ✓ 20% 15% 20%

2 CWE-22 Path Traversal 16 ✓ 12.5% 18.75% 68.75%

3 CWE-502 Deserialization of Untrusted Data 16 ✓ 6.25% 18.75% 18.75%

4 CWE-611 XML External Entity Injection (XXE) 11 ✓ 27.27% 36.36% 81.82%

5 CWE-200 Exposure of Sensitive Information 8 ✓ 0% 0% 100%

6 CWE-918 Server-Side Request Forgery (SSRF) 6 ✓ 0% 16.67% 16.67%

7 CWE-20 Improper Input Validation 5 ✓ 0% 0% 20%

8 CWE-668 Exposure of Resource to Wrong Sphere 5 ✓ 20% 80% 100%

9 CWE-89 SQL Injection (SQLi) 5 ✓ 20% 40% 0%

10 CWE-203 Observable Discrepancy 4 25% 50% 0%

Total (Top 10) 96 - 13.54% 22.92% 36.46%

Total (Whole dataset) 169 - 16.57% 21.89% 27.81%

that, heuristic-based fix templates are responsible for 74%
of the fixes in Vul4J+, and 85% in Vul4JL. Furthermore,
most of the unique repairs by VULTERMINATOR are also due
to the heuristic-based fix templates.

We also examined the vulnerabilities Gemini-2.5 Pro and
GPT-4o fixed that VULTERMINATOR could not. We found that
many of them could potentially be fixed with the data-driven
templates. However, the correct fix ingredients could not be
inferred from the codebase and, hence, VULTERMINATOR was
unable to synthesize them. For example, VULTERMINATOR is
potentially able to fix CVE-2021-4296 (XSS vulnerability) by
invoking a sanitization method on the untrusted input before
it is included in HTML content; however, this method call is
not available in the codebase. GPT-4o successfully repairs this
vulnerability by creating a new method definition to escape
common special HTML characters.

In conclusion, the results suggest that VULTERMINATOR
could be integrated with other approaches, such as Gemini-
2.5 Pro, to repair more Java vulnerabilities or to obtain
confirmation of each technique’s results.

D. RQ4: Fix Template Contribution

Lastly, we shed more light on the contributions of the
individual fix template of VULTERMINATOR. We zoomed into
the 78 vulnerabilities correctly repaired by VULTERMINATOR
in Vul4J+ and Vul4JL, and we counted the number of fixed
vulnerabilities for each fix template. Figure 8 shows the distri-
bution of the fix templates used for repairing the vulnerabilities
in the two datasets. Note that we do not include results of FT9
since this fix template could not generate any correct patches.

Overall, ten out of the eleven defined fix templates could
fix at least one vulnerability. Among them, FT1 (Prevent XXE
Vulnerabilities) produced correct patches for 21 vulnerabili-
ties, achieving the best repair performance, followed by FT4
(Prevent Path Traversal Vulnerabilities) with 17 correctly fixed
vulnerabilities. Both FT1 and FT4 are heuristic-based.

1
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29

1731

VulTerminator GPT-4oGemini-2.5 Pro
(H): Heuristic-based Template, (D): Data-driven Template

(a) In Vul4J+ (106 Vuls)
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3 (D)3 (H)

3 (D)

1 (H)
1 (D)12 (H)
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(b) In Vul4JL (169 Vuls)
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Fig. 7: Overlaps of vulnerabilities fixed by VULTERMINATOR,
Gemini-2.5 Pro, and GPT-4o. Focus on heuristic-based (H) vs
data-driven (D) fix templates.

Fig. 8: Contributions of individual fix templates to overall
repair performance of VULTERMINATOR.

Moreover, FT6 (Prevent the Exposure of Sensitive Data)
and FT5 (Prevent Insecure Temporary File Creation), which
also belong to heuristic-based templates, produced correct



patches for nine and eight vulnerabilities, respectively. This in-
dicates that heuristic-based templates dominate and contribute
to the most correct repairs in VULTERMINATOR. Among data-
driven fix templates, FT7 (SanitizeInput) fixed the largest num-
ber of vulnerabilities. Interestingly, this fix template performs
2.5× better on Vul4JL than Vul4J+ (i.e., five vulnerabilities in
Vul4JL vs. two in Vul4J+). This indicates that although FT7
does not achieve performance comparable to the heuristic-
based templates, it shows its great repair effectiveness in real-
world cases. The two least effective fix templates in our study
are FT2 (Instantiate Secure Random Generator) and FT11
(AddIf_Return), which only fix two and one vulnerabilities in
Vul4J+, respectively. The number of vulnerabilities related to
PRNGs, which FT2 targets, is relatively small (only four in
total across both datasets). In contrast, the vulnerabilities that
FT11 failed to repair often required complex fix ingredients
that could not be found in the codebase.

V. RELATED WORK

Automated Program Repair (APR) has gained ground in
software engineering research since the seminal work Gen-
Prog [54]. Among APR families, template-based APR be-
comes a popular approach to fix general bugs, by utilizing the
fix templates derived manually from human knowledge [55],
[56], [57] or mined from code repositories [58], [59], [60],
[61]. TBar [13] is considered the baseline for this family
by summarizing 35 fix templates from the previous studies.
Recently, LLMs have brought significant improvements to
template-based APR with state-of-the-art repair techniques
such as GAMMA [14], TENNURE [15], and NTR [16]. These
learning-based approaches first use fix templates to generate
code with masks, and then leverage LLMs to fill them.

On the other hand, Automated Vulnerability Repair (AVR)
remains an evolving area of research, as only a few works fo-
cus on repairing vulnerabilities. Le Goues et al. [62] improved
GenProg and evaluated it on several vulnerabilities, including
one linked to a CVE record (CVE-2011-1148). Huang et
al. [63] introduced Senx, consisting of a set of rules based
on safety properties designed to generate patches for memory-
based vulnerabilities. Abadi et al. [64] proposed an approach
that fixes injection vulnerabilities by adding sanitizers in the
vulnerable code. VuRLE [65] and SEADER [66] infer the
transformations from examples to fix vulnerabilities in Java
bytecode binaries. While these approaches improved repair
performance for specific vulnerabilities, their generalizabil-
ity to broader vulnerability types remains unclear. Recently,
several promising deep learning–based AVR tools have been
proposed for repairing vulnerabilities, such as VRepair [1],
SeqTrans [7], VulRepair [2], SPVF [3], and VulMaster [4].
These AVR approaches treat vulnerability repair as a sequence
transformation-based code generation task, where the goal is
to generate patches for the vulnerable function as input using
LLMs. Still, their repair performance remains limited by the
scarcity of large, high-quality training datasets.

Unlike existing AVR techniques, VULTERMINATOR adopts
ideas from template-based APR to offer a trade-off solution for

fixing vulnerabilities, which is implemented through heuristic-
based and data-driven fix templates.

VI. THREATS TO VALIDITY

The main threat to external validity may stem from the
choice of our evaluation datasets. We selected Vul4J+ as it
is the largest collection of Java vulnerabilities with runnable
vulnerability-witnessing tests, which are fundamental for as-
sessing the plausibility of the generated patches. VULTERMI-
NATOR inferred its fix templates from ExtraVul [17], which
overlaps with Vul4J+ on 79 vulnerabilities. Therefore, the
results obtained on Vul4J+ might be biased. Therefore, we also
introduced a novel dataset, Vul4JL, containing 169 new Java
vulnerabilities extracted from REEF [44] and ReposVul [45]
that were not used to infer the fix templates in VULTER-
MINATOR. The vulnerabilities in Vul4JL are representative
of real-world scenarios, specifically, the nine most frequent
vulnerability types in Vul4JL correspond to entries in the
2021 OWASP Top 10 [53]. The experiments show that the
trends in repair results are consistent between Vul4J+ and
Vul4JL. Notably, several of our fix templates even achieve
better performance on the unseen dataset. A potential threat
to internal validity arises from the manual validation of patch
correctness, where human error may occur. To minimize this
risk, two authors double-checked all patches, and a patch was
deemed correct only if both authors agreed on its correctness.
VULTERMINATOR was designed for Java, so its performance
may not generalize to other programming languages.

VII. CONCLUSION

This paper presents VULTERMINATOR, a novel vulnerabil-
ity repair approach that leverages eleven heuristic-based and
data-driven fix templates. To the best of our knowledge, this
is the first work to propose and apply security-specific fix
templates for repairing Java vulnerabilities with a wide array
of vulnerability types. Our experiments demonstrate that VUL-
TERMINATOR achieves state-of-the-art performance. Further
analysis reveals that heuristic-based fix templates contribute
the most to the success of our approach, while the data-driven
fix templates, which employ a fine-tuned LLM, are capable of
repairing a broader range of vulnerabilities, complementing
those addressed by the heuristic-based templates.

DATA AVAILABILITY

The implementation of VULTERMINATOR is open-sourced
at: https://github.com/tuhh-softsec/VulTerminator. We also
provide a replication package [23], which contains all scripts
required to rerun the experiments, as well as the raw and
processed data used in this study.
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