
A Match Made in Heaven? AI-driven Matching of Vulnerabilities
and Security Unit Tests

Emanuele Iannone
Hamburg University of Technology

Hamburg, Germany
emanuele.iannone@tuhh.de

Quang-Cuong Bui
Hamburg University of Technology

Hamburg, Germany
cuong.bui@tuhh.de

Riccardo Scandariato
Hamburg University of Technology

Hamburg, Germany
riccardo.scandariato@tuhh.de

Abstract

Software vulnerabilities are often detected via taint analysis, pene-
tration testing, or fuzzing. They are also found via unit tests that
exercise security-sensitive behavior with specific inputs, called
vulnerability-witnessing tests. Generative AI models could help de-
velopers in writing them, but they require many examples to learn
from, which are currently scarce. This paper introduces VuTeCo,
an AI-driven framework for collecting examples of vulnerability-
witnessing tests from Java repositories. VuTeCo carries out two
tasks: (1) The “Finding” task to determine whether a unit test case
is security-related, and (2) the “Matching” task to relate a test case
to the vulnerability it witnesses. VuTeCo addresses the Finding

task with UniXcoder, achieving an 𝐹0.5 score of 0.73 and a preci-
sion of 0.83 on a test set of unit tests from Vul4J. The Matching

task is addressed using DeepSeek Coder, achieving an 𝐹0.5 score of
0.65 and a precision of 0.75 on a test set of pairs of unit tests and
vulnerabilities from Vul4J. VuTeCo has been used in the wild on
427 Java projects and 1,238 vulnerabilities, obtaining 224 test cases
confirmed to be security-related and 35 tests correctly matched
to 29 vulnerabilities. The validated tests were collected in a new
dataset called Test4Vul. VuTeCo lays the foundation for large-
scale retrieval of vulnerability-witnessing tests, enabling future AI
models to better understand and generate security unit tests.

CCS Concepts

• Software and its engineering → Software testing and de-

bugging; Software libraries and repositories; • Security and

privacy→ Software security engineering.
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1 Introduction

Software vulnerabilities are often detected using techniques such as
taint analysis, penetration testing, or fuzzing [4, 33, 36, 58], which
test a complete application and are usually not integrated into
the development workflow. The “shift-left” paradigm encourages a
test-first approach, in which the test infrastructure to detect vulner-
abilities starts at the unit level, akin to how bugs are found [20].

Security unit tests trigger vulnerabilities with crafted payloads
and use assertions to confirm they are really present [14, 16, 45].
Listing 1 shows a security unit test for a path traversal vulnerabil-
ity (CWE-22) affecting Apache JSPWiki, which is localized in the
getForwardPage() method and is disclosed via CVE-2019-0225.
Lines 3–4 show the official patch for this vulnerability. If the test
method testNastyDoPost() is executed on the vulnerable version
of getForwardPage(), it will fail because the focal method does
not return the main wiki page as intended, given the crafted pay-
load at Line 9. Hence, the failed assertion at Line 16 confirms the
presence of the vulnerability. A test case behaving like this is called
vulnerability-witnessing test [32] (a.k.a. Proof of Vulnerability,
PoV [8, 50]), or simply “witnessing test” throughout this paper.

Real-world examples of witnessing tests are collected in Vul4J [8],
the only Java dataset containing manually-validated unit tests (108
in total) matched with 79 vulnerabilities affecting 51 Java projects.
The process that led to the creation of Vul4J mainly consisted of
building the projects and running their test. This encountered two
key problems. First, building the projects largely failed due to com-
pile errors and missing dependencies, requiring extensive, tentative
manual fixes that did not always succeed. Second, the selected test
suites included the tests that existed just after the vulnerability-
fixing commit; however, they may not include the witnessing tests,
since those could be added in later commits. Among the 899 vul-
nerabilities inspected, the authors could only reproduce 79 (∼9%).
Consequently, this strategy for retrieving vulnerability-witnessing
tests based on dynamic execution is often unsuccessful (like finding
a needle in a haystack) and effort-consuming.

Thus, the software security research community is in dire need
of more samples of vulnerability witnessing tests. Some compelling
use cases for such data are: (i) Understanding the nature of wit-
nessing tests, (ii) training AI models that support the generation
of security tests [32, 66], and (iii) validating the techniques that
produce security patches [8, 18, 37, 44]. In this paper, we present
VuTeCo (VUlnerability TEst COllector), a fully-static AI-driven
framework that retrieves vulnerability-witnessing tests in Java test
suites. VuTeCo addresses two tasks: (1) The “Finding” task to deter-
mine whether a test case is security-related, and (2) the “Matching”
task to pair a test case to the specific vulnerability it is witnessing.
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1 // Fix to CVE-2019-0225

2 public String getForwardPage(HttpServletRequest request) {

3 − return request.getPathInfo();

4 + return ”Wiki.jsp”;

5 }

6 // Vulnerability-witnessing test

7 @Test

8 public void testNastyDoPost() throws Exception {

9 MockHttpServletRequest req = new MockHttpServletRequest("/JSPWiki","/wiki/Edit.jsp");

10 WikiServlet wikiServlet = new WikiServlet();

11 MockServletConfig config = new MockServletConfig();

12 config.setServletContext(new MockServletContext("/JSPWiki"));

13 wikiServlet.init(config);

14 wikiServlet.doPost(req, new MockHttpServletResponse());

15 wikiServlet.destroy();

16 Assertions.assertEquals("/Wiki.jsp?page=Main&", req.getForwardUrl());

17 }

Listing 1: Official fix for CVE-2019-0225 and its related wit-

nessing test in Apache JSPWiki.

VuTeCo has been evaluated in a hold-out set of Vul4J, where it
achieved 0.73 𝐹0.5 score and 0.83 precision in the Finding task. In the
Matching task, VuTeCo scored 0.65 𝐹0.5 score and 0.75 precision.
Afterwards, VuTeCo was used in a large-scale mining campaign on
GitHub (427 projects), where it retrieved 224 confirmed security-
related test cases and 35 tests correctly matched to 29 vulnerabilities.
Thus, VuTeCo provides valuable support for large-scale retrieval
of security unit test examples for many downstream applications.

In summary, this paper: (1) Introduces VuTeCo, the first ever
framework to retrieve vulnerability-witnessing tests in Java repos-
itories; (2) extensively evaluates several AI model types to find the
right configuration for VuTeCo; and (3) releases Test4Vul, a
dataset containing 259 confirmed security-related unit tests found
and matched by VuTeCo in the wild.

2 The VuTeCo Framework

2.1 Overview

VuTeCo supports two tasks: Finding and Matching. The Finding
task accepts a unit test case, i.e., a JUnit test method, and tells if it
is security-related (“Security” ) or if its nature is unclear (“Unclear” ).
TheMatching task accepts a unit test case and a textual description
(in English) of a known vulnerability and determines if the test case
witnesses that vulnerability (“Matched” ) or not (“Not-Matched” ).
Therefore, both tasks are modeled as binary classification problems,
which can be run independently from one another (namely, the
Matching does not require a prior run of the Finding task). The two
tasks are further detailed in Sections 2.2 and 2.3.

Figure 1 depicts the functioning of VuTeCo. Besides the two AI
models, VuTeCo also includes a tool that automatically retrieves
JUnit test methods from a given Git repository and vulnerability
descriptions from CVE identifiers (see Section 2.4 for details).

2.2 The Finding Task

The upper part of Figure 2 illustrates the architecture of the model
responsible for the Finding task, which is a neural network based
on UniXcoder [21]. We hereby refer to this model as Finder . The
choice of UniXcoder resulted from the experimentation designed
in Section 3.1 and reported in Section 4.1. We selected the check-
point unixcoder-base from Hugging Face [43], which has been

Test Method

Test Suite

Finding Matching

Project Revision
(user supplied)

Finder

Test Method

Matcher

Vulnerability
Description

Vulnerability
Knowledge Base

Vulnerability Descriptions

Security Unclear Matched Not
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DB LookupTest Retrieval

Vulnerability CVEs
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Figure 1: Graphical overview of VuTeCo.

pre-trained on multiple representations of source code, including
Abstract Syntax Trees for better understanding. It experienced six
different programming languages, including Java, as well as natural
language from code comments (often English), making it suitable
for understanding the content of JUnit test methods.

Before feeding the input to the model, the test method is stripped
of newline characters and consecutive whitespace (including tabs),
reducing it to a single line. The resulting string is tokenized with
Byte-Pair Encoding using a vocabulary fitted onCodeSearchNet [28],
and then sent to the UniXcoder input layer in “encoder-only” mode,
i.e., by prepending the [CLS] token and the special token [Enc]
to the input (up to 512 encoded tokens). To obtain the sentence
embedding, which represents the entire test method, we perform
mean pooling over all token embeddings, as in UniXcoder’s official
implementation [42], yielding a 768-dimensional representation.
On top of this, we added a classification head with two linear layers
(with the GELU activation function [23]) of 512 and 128 neurons,
respectively, plus an output layer that returns the probability of
belonging to the positive class.

The whole model (UniXcoder and the classification head) was
trained for ten epochs on a dataset of “Security” and “Unclear” unit
test methods using Weighted Binary Cross-entropy loss to mitigate
the large class imbalance. Additional details on the training setting
are reported in Section 3.1.

2.3 The Matching Task

The lower part of Figure 2 illustrates the architecture of the model
responsible for theMatching task, which uses DeepSeek Coder [22].
We hereby refer to this model as Matcher . The choice of DeepSeek
Coder resulted from the experimentation designed in Section 3.1
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Figure 2: Inner working of Finding andMatching in VuTeCo.

and reported in Section 4.1. DeepSeek Coder is a chat-based gener-
ative large language model specialized in code-related tasks, includ-
ing code understanding. We selected the checkpoint deepseek-coder-
6.7b-instruct from Hugging Face [52], which has been pre-trained
in three sessions: Two self-supervised sessions (next-token predic-
tion and fill-in-the-middle) to learn to understand individual files,
and one supervised session to learn to follow instructions from
prompts (i.e., instruction-tuning) [22]. In total, DeepSeek Coder ex-
perienced 87 programming languages, including English text from
code comments, GitHub Markdown, and StackExchange. For all
the said reasons, this model can understand the content of JUnit
test methods and vulnerability descriptions.

VuTeCo inserts the vulnerability description and the JUnit test
method code (truncated if exceeding the model’s maximum length,
set to 4,096 tokens) in a natural language prompt as follows:

DeepSeek Coder Prompt Template

[System] You are an expert in unit testing and security testing.
Given the following vulnerability description and JUnit test
method (it might be truncated if too long), answer with 1 if
the test case is likely to identify the described vulnerability
in the code under test, or 0 if it is not. Answer with only the
number, with no explanation.
[User] Vulnerability Description:
{vulnerability_description}
JUnit Test Method:
{method_signature_and_body}
[Assistant]

The final wording of the system prompt was developed with
assistance from ChatGPT (GPT-4o) in May 2025, which helped us
refine our initial version (in the replication package [30]) to better
suit an LLM. The placeholders [System], [User], and [Assistant] are
not part of the prompt and only indicate the three roles recognized
by DeepSeek Coder. This prompt is further transformed by applying
the DeepSeek Coder’s chat template, which starts with the system
prompt, then adds ‘### Instruction:’ to initiate the user part,
and ‘### Response:’ to start the assistant part. The resulting text
is tokenized with Byte-Pair Encoding.

At test and inference time, the [Assistant] part is intentionally left
empty to induce the model to respond to the system+user prompt,
whereas during training, the [Assistant] part contains the ground
truth (expected) response—according to the standard practice to
fine-tune generative LLMs. According to the system prompt, the
responses are enforced to provide the classification with just 0 or 1.
Hence, the responses are post-processed with a regular expression
to extract the first digit encountered (disregarding any additional
text), mapping 0 to “Not-Matched” and 1 to “Matched” .

We followed a two-step approach to train the DeepSeek Coder
model. First, we ran a pre-training session for eight epochs on
a small dataset of “Matched” and “Not-Matched” pairs involving
solely vulnerability-witnessing test methods (i.e., excluding non-
security tests), and a fine-tuning session for five epochs on the
complete dataset of “Matched” and “Not-Matched” pairs involv-
ing non-security tests as well (more details in Section 3.1.3). Both
training steps were modeled as a Causal Language Modeling task,
computing the Cross Entropy loss only on the [Assistant] part, and
employed LoRA (Low-Rank Adaptation) optimization [26]. The
two training datasets were oversampled with SPAT [65], a tool
that creates semantically equivalent clones of Java methods. We
used it to generate further examples of vulnerability-witnessing
tests, thereby increasing the number of pairs. We ran it five times
to generate diverse examples (removing any resulting duplicates).
More details on the training setting are reported in Section 3.1. To
ensure that the same pair will always be classified in the same way,
VuTeCo uses greedy decoding during inference, i.e., at each step
the model selects the single most probable next token.

2.4 Tool-assisted Input Retrieval

VuTeCo is assisted by a tool that collects and prepares the input
(upper part of Figure 1) for the two AI models (the core of VuTeCo).
The tool accepts a revision hash (i.e., a commit) of any Git-based
repository (remote URL) from the user. This will be cloned locally,
and all its Java files parsed (using javalang [9]). Then, it marks as
a “test case” any method with the following properties:

(1) it is annotated with @Test (JUnit 4 and 5) or its class extends
TestCase or any subclass of it (for JUnit 3);

(2) it is not overriding a method defined in class TestCase, like
run() or getName() (for JUnit 3);

(3) it is not a “lifecycle method”, i.e., annotated with @BeforeAll,
@AfterAll, @BeforeEach, or @AfterEach;

(4) it returns void if not annotated with @TestFactory;
(5) it is not abstract, static or private;
(6) its class is not abstract.

Such heuristics were designed based on how the JUnit guide de-
scribes a test case [59] and the Javadoc of JUnit beyond version 3.

Additionally, in the Matching task, the tool also accepts a set
of CVE identifiers from the user, which are used to look up an
internal knowledge base of 1,992 Java vulnerabilities to retrieve
their descriptions. We prepared this catalog by aggregating and
de-duplicating three established datasets of Java vulnerabilities,
i.e., ProjectKB [56], REEF [62], and ReposVul [63]. The catalog
also stores additional useful metadata, such as CWE (Common
Weakness Enumeration) and known fix commits. If a CVE identifier
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is not found in the catalog, the tool can retrieve the missing data
online using the Vulnerability-Lookup API [13].

Afterward, the tool sends the retrieved data to the model respon-
sible for the requested task (Finding or Matching). In the Finding
case, each collected test case is sent to the Finder model to assess
its relevance to security. In the Matching case, the test cases are
paired with the vulnerability descriptions in all possible ways (i.e.,
Cartesian product), and each is sent to the Matcher model to assess
whether the test case witnesses the paired vulnerability.

3 Evaluation Design

We conducted a two-phase evaluation. First, we performed an exper-
imental evaluation to search for the best AI model to carry out the
Finding and Matching tasks. This involved testing several AI model
types on a hold-out set originating from Vul4J—the same source
also used for their training. We involved six main models: Three
based on pre-trained transformers, CodeBERT [17], CodeT5+ [64],
and UniXcoder [21]; and three generative large language models,
CodeLlama [54], DeepSeek Coder [22], and Qwen2.5-Coder [27].
We hereby distinguish the two groups as code representation mod-

els (CRMs) and large language models (LLMs), respectively. The
CRMs transform the input into fixed-length embeddings and pro-
cess them with a linear classification head to obtain the predicted
classes. The LLMs, instead, are prompted to analyze the input and
provide a binary response directly. We downloaded from Hugging
Face the snapshots: codebert-base, codet5p-220m, unixcoder-base,
CodeLlama-7b-Instruct-hf , deepseek-coder-6.7b-instruct, Qwen2.5-
Coder-7B-Instruct. This evaluation aimed to assess the suitability
of such models for the Finding and Matching tasks using validated
data. For the Finding task, the six models were trained and tested
on a collection of test cases extracted from projects in Vul4J. In the
Matching task, the six models were trained and tested using the
same set of test cases, but also paired with vulnerability descrip-
tions that affected the corresponding projects. Thus, we carried out
a total of 12 distinct train-test sessions.

In the second phase, we performed a complementary analysis
that examined VuTeCo’s performance in the wild, i.e., running the
best AI models (already mentioned in Section 2) resulting from the
previous evaluation on a large set of Java projects outside Vul4J.
Accordingly, we formulated the following research questions:

Û RQ1. What are the best AI models for finding security

unit tests and matching them with the right vulnerability?

Û RQ2. How well can VuTeCo find security unit tests in the
wild and match them with the right vulnerability?

3.1 Experimental Evaluation (RQ1)
3.1.1 Data Selection and Preprocessing. The primary source of data
for this experimental evaluation was Vul4J [8], as it is the only
known source with validated JUnit test methods matched with
the vulnerabilities they witness. At the time of this paper writing,
Vul4J had 79 reproducible vulnerabilities across 51 Java projects.
From these projects, we checked out their patched revisions (i.e.,
the project versions in which the vulnerability has been fixed and
where the witnessing tests have been found) and collected all their
test suites using the heuristic described in Section 2.4. We fetched

metadata—including descriptions—of the 79 vulnerabilities appear-
ing in Vul4J using the VuTeCo’s internal knowledge base (Section
2.4), resulting in 76 vulnerabilities with metadata (three were re-
ported through inaccessible bug trackers rather than CVE).

For the Finding task, we considered all the 108 JUnit test methods
reported Vul4J as confirmed examples of witnessing tests, labeling
them as “Security” (the positive class). To create the negative class
(“Unclear” ), we used all the remaining non-duplicated JUnit test
methods mined from the 51 projects in Vul4J, totaling 39,542. We
note that the negative class for the Finding task comprises test cases
lacking sufficient evidence of their security relevance, rather than
being tests that are entirely unrelated to security (hence the name
“Unclear” ). Then, we split the dataset using stratified sampling (i.e.,
keeping the same class distribution), creating a training set 𝑇𝑅𝐹
(70%), a development set 𝐷𝐸𝐹 (10%), and a test set 𝑇𝐸𝐹 (20%).

For the Matching task, we created pairs of test cases and the
descriptions of the witnessed vulnerabilities in Vul4J. For example,
the test method testSendingStringMessage() was paired with
the vulnerability CVE-2015-0263 (according to the dataset entry
VUL4J-3). Due to the three vulnerabilities discarded previously, the
total number of valid pairs was 105, which formed the positive
class (“Matched” ). To create the negative class (“Not-Matched” ),
we paired all test methods in Vul4J with unrelated vulnerabilities
affecting the same project, forming 84,506 invalid pairs. Just as
for the Finding task, we split this dataset with stratified sampling,
creating a training set 𝑇𝑅𝑀 (70%), a development set 𝐷𝐸𝑀 (10%),
and a test set 𝑇𝐸𝑀 (20%).

Depending on the model type, we prepared the input in dif-
ferent ways. For the CRMs, the input test methods in both Find-

ing and Matching tasks were flattened into a single line, and any
multiple occurrences of whitespace were replaced with a single
one—indeed, we observed that removing them could improve per-
formance beyond reducing the input length. In the Matching task,
the description was placed in the test method’s Javadoc, exploiting
the familiarity that the underlying encoder models have with source
code with documentation. Regarding the LLMs, the prompt for the
Matching task was the same as the one presented in Section 2.3,
while for the Finding task, we used a similar one that omits the
vulnerability description. The difference lies in the central part:
‘Given the following JUnit test method [...] answer with 1 if the test

case is likely to identify a vulnerability in the code under test’. In
both tasks, we did not preprocess the test method code (as done,
instead, with the CRMs), but truncated it if it exceeded the model’s
maximum length (4,096 tokens).

3.1.2 Performance Indicators. Both the Finding andMatching tasks
were modeled as binary classification problems. Hence, we relied
on the traditional metrics to measure the goodness of binary predic-
tions, i.e., precision (Pr), recall (Re), F1 score [5, 51]. We also selected
the Matthews’s correlation coefficient (MCC) [40] as a key indicator
due to its reliability in imbalanced problems (like these two), and
we reported the absolute number of positive classifications (i.e.,
True Positives and False Positives) to contextualize all the metrics.

VuTeCo’s primary goal is tomaximize the number of correct

findingswhileminimizing incorrect ones. The aim is to develop
an approach that identifies examples of witnessing tests in software
repositories, addressing the challenges outlined in Section 1. Given
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this circumstance, we include the 𝐹0.5 score in the analysis, which
is a varied version of the 𝐹1 score where twice as much weight is
given to precision compared to recall [60]. We prioritized this score
in the experimental evaluation because it quantifies the trade-off
between precision and recall and aligns with VuTeCo’s require-
ments. Additional metrics, such as the AUC-ROC, are reported in
the replication package [30].

3.1.3 Model Configuration. We identified key factors that we hy-
pothesized could affect the performance of the AI models. In Sec-
tion 4.1, we report the best-performing configuration for each AI
model (based on the 𝐹0.5 score on the test set).

Factor: Data Augmentation. In both tasks, we addressed class
imbalance in the respective training sets. We experimented with
three mechanisms: (1) JavaTransformer (JT) [53], a tool that
transforms a Javamethod (including testmethods) into semantically-
equivalent clones by applying nine semantic-preserving transfor-
mation rules, like renaming variables or adding random logging
statements; (2) SPAT [65], another tool creates semantically-equiv-
alent clones of Java methods with 18 transformation rules akin
to JavaTransformer; (3) Bootstrapping (BS), a resampling tech-
nique creating exact copies of instances in the minority class (a.k.a.
random oversampling). We ran JavaTransformer (JT) and SPAT
five times, as they could generate additional semantically equiv-
alent clones due to random variable names they can synthesize.
For bootstrapping (BS), instead, we set the target imbalance ratio
to 0.25, i.e., re-sampling until the minority instances were 25% of
the total. We also experimented with a fourth case in which the
training data were not augmented.

Factor: Loss Function (CRMs only). In both tasks, we con-
trolled the loss function for training the CRMs. We experimented
with the standard binary cross-entropy and its weighted version,
i.e., where we supplied the weights of the two classes to penal-
ize more the misclassifications made on the minority class (either
“Security” or “Matched” ) [67]. The weights were computed from
the training set using the compute_class_weight() function of
scikit-learn. Regarding the LLMs, we could only use the stan-
dard cross-entropy loss as their training is modeled as a causal

language modeling task, where the prediction target is a sequence
of tokens, rather than one of two possible classes.

Factor: Decomposition of Matching (CRMs only). In the
standard case, training a model for the Matching task consisted
of fitting it on 𝑇𝑅𝑀 . However, we also modeled this task with
a different approach for the three CRMs, i.e., by employing two
sub-models (of the same architecture, e.g., two UniXcoder models).
The first sub-model aims to determine whether the test method
is likely to witness a vulnerability—therefore, it reuses the best
configurations resulting from the experimentation made for the
Finding task. The second sub-model implements a “simplified” ver-
sion of the ordinary Matching task by assuming that the input
test method is always security-related. Hence, its three datasets
(training, development, and testing) are made by discarding the
pairs involving non-witnessing test methods from 𝑇𝑅𝑀 , 𝐷𝐸𝑀 , and
𝑇𝐸𝑀 . We refer to these altered datasets as 𝑇𝑅′

𝑀
, 𝐷𝐸′

𝑀
, and 𝑇𝐸′

𝑀
,

totaling 105 “Matched” pairs and 7,665 “Not-Matched” pairs. We
separately searched for the optimal configuration for the second
sub-model on this simplifiedMatching task. We did not employ any

decomposition for the LLMs due to the very slow inference time of
invoking two models per prediction.

The outputs of the two sub-models are integrated into a single,
final judgment to address the “real” Matching task. This integra-
tion happened using three approaches. (1) “Meta” aggregates the
logits from both sub-models using a linear layer that outputs a
single logit, learning a weighted combination of their predictions.
(2) “Fuse” concatenates the final hidden states (embeddings) from
both sub-models, projects them into a 64-dimensional latent space,
and then applies another linear layer to output the final logit. (3)
“Mask” returns the logit from the second sub-model only if the
first sub-model predicted that the test method is likely to witness a
vulnerability (𝑃 (“Security” )≥0.5); otherwise, the logit from the first
sub-model is selected as the final output.

Factor: Training Mode for Matching. Regardless of whether
theMatching task is performed by a single model or two sub-models,
the availability of the dataset 𝑇𝑅′

𝑀
has enabled experimentation

with three distinct training modes. In the pre-train case (PT), the
training happens solely on 𝑇𝑅′

𝑀
if the Matching task is carried out

with one model; otherwise, the two sub-models are just trained
separately on 𝑇𝑅𝐹 and 𝑇𝑅′

𝑀
, respectively. Fine-tune (FT) trains

the full model directly on𝑇𝑅𝑀 , regardless of whether theMatching

task is decomposed. Full-train (PT-FT) employs both pre-train and
fine-tune strategies, sequentially. These three training modes were
tested for all six AI models involved.

Hyperparameter Optimization. Since the number of factors
for the Finding task was fewer than for theMatching task, we could
run additional experiments by optimizing some hyperparameters

to further improve performance, selecting the variants with the
highest 𝐹0.5 score and the lowest loss on the development set. We
optimized the “intensity” of augmentation mechanisms, i.e., the
number of times the JavaTransformer or SPAT were run during
oversampling (5 and 15) and the target imbalance ratio for boot-
strapping (0.25 and 0.50). The two layers of the CRMs’ classification
head were set to 512 and 128 in size; however, for the Finding task,
we also optimized their size by searching in the space {512, 256}
and {128, 64}, respectively.

3.1.4 Model Implementation and Training. The models have been
implemented with PyTorch and trained with the transformers
API. For all training sessions, the weights were updated using the
AdamW optimizer [38], with a learning rate of 10−5 for CRMs,
and 2 · 10−4 for LLMs, both decaying linearly. The CRMs were
trained for 10 epochs, while the LLMs were trained with LoRA
(rank 16) [26] for five epochs. After each epoch, the model was
evaluated on the development set. Upon completion of training,
the checkpoint with the highest 𝐹0.5 score was selected, using the
lowest loss as a tiebreaker if necessary. The classification heads of
the CRMs used a dropout probability of 0.1 between every linear
layer to reduce the risk of overfitting [25].

The experiment was conducted on a server equipped with an
NVIDIA Tesla A100 Core GPU and an Intel Xeon Platinum 8352V
CPU. Counting all combinations of factors (the details are in the
replication package [30]), we ran 36 train-testing sessions for the
Finding task, of which 24 were for the CRMs and 12 were for the
LLMs. On average, each CRM session took 4 hours, whereas each
LLM session took 50 hours. For theMatching task, we ran a total of
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324 train-testing sessions. For the CRMs, we had 72 sessions from
the case without decomposition into two sub-models, while the
other 216 sessions were from the case with two sub-models. For
the LLMs, we had 36 sessions. On average, each CRM session took
5 hours, whereas each LLM session took 60 hours.

3.1.5 Baseline Approaches. Our study is the first to address the
problem of finding security test cases and matching them to vul-
nerabilities (to the best of our knowledge); thus, there are no direct
competitors. Nevertheless, we developed three baseline approaches

for the Finding task and four for theMatching task, relying on prin-
ciples different from those of the CRMs and LLMs.We experimented
with multiple configurations for each baseline. In Section 4.1, we
report only the best-performing configuration for each approach
(based on the 𝐹0.5 score on the test set).

Baselines for Finding. The approachGrepFind checks if the test
method code contains one or more security-specific keywords, such
as ‘secur’, ‘cve’, ‘xss’; if so, it is flagged as “Security” . We used the set
of keywords defined by Zhou and Sharma [69] and further expanded
with additional ones (the full list is in the replication package [30]).
In essence, this approach behaves like the grep -e command. We
conducted experiments varying the required number of matches
from 1 to 5, testing each condition with and without our extended
list, totaling 10 configurations. The VocabFind approach, instead, fits
a vocabulary of terms on the test methods in the training set 𝑇𝑅𝐹 .
Then, it checks if the terms of the input test method adhere to the
fitted vocabulary (i.e., the test method shares a similar vocabulary
with the known test cases). If the number of matched terms exceeds
the threshold 𝑁 , the input test method is flagged as “Security” . The
terms were extracted in two ways: (i) using YAKE, which picks the
𝐾 most relevant terms from a text in an unsupervised manner [10],
and (ii) retrieving all the identifiers (i.e., variable andmethod names)
in the test case, as they likely indicate the purpose of the test and
are not mixed with other irrelevant language-specific keywords.
We refer to these two flavors as VocabFind𝑌𝐴𝐾𝐸 and VocabFind𝐼𝑑𝑒𝑛 ,
respectively. We experimented with 𝑁=[1..10] (step of 1) for both
flavors. For VocabFind𝑌𝐴𝐾𝐸 we experimented with 𝐾=[5..30] (step
of 5), while for VocabFind𝐼𝑑𝑒𝑛 we experimented with honoring
camelCase and snake_case notations (e.g., whether identifiers like
user_Passwordmust be split into user and password), totaling 80
configurations.

Baselines for Matching. The GrepMatch approach checks if
the test method code matches one or more terms appearing in
the paired vulnerability description; if so, the pair is flagged as
“Matched” . The terms are vulnerability descriptions obtained via
word-level tokenization and removal of English stop words. We var-
ied the required number of hits from 1 to 5. The SimMatch approach
checks the similarity between the test method code and the vulner-
ability description and flags the pair as “Linked” if the similarity
score surpasses an arbitrary threshold 𝑇 . We made two different
implementations. SimMatch𝑌𝐴𝐾𝐸 extracts the keyword sets from
both inputs using YAKE [10] and compares them using the Jaccard
index. SimMatch𝐶𝑅𝑀 uses one of three CRMs, i.e., CodeBERT [17],
CodeT5+ [64], and UniXcoder [43], to create embeddings for both in-
puts and compare them using cosine similarity. For SimMatch𝑌𝐴𝐾𝐸

we experimented with 𝑇=[0.01..0.05] (step of 0.01) and 𝐾=[5..30]
(step of 5). For SimMatch𝐶𝑅𝑀 we experimented with five similarity

thresholds depending on the embedding models: 𝑇=[0.91..0.95]
(step of 0.01) for CodeBERT, for CodeT5+𝑇=[0.7..0.9] (step of 0.05),
and for UniXcoder𝑇=[0.3..0.5] (step of 0.05). A total of 45 configura-
tions have been evaluated. Lastly, we developed FixCommits, which
inspects the fix commits of a vulnerability 𝑣 , collects the set of added
or modified test methods 𝑇𝑀 , and flags the pairs (𝑡, 𝑣),∀𝑡 ∈ 𝑇𝑀
as “Matched” . Any other pair is considered as “Not-Matched” . This
approach relies on the assumption that developers create unit tests
alongside the patches to demonstrate that the vulnerability has
been successfully fixed. We note that there is currently insufficient
evidence to support that this core assumption always holds, as
developers may not create tests when fixing vulnerabilities [8].
For example, in CVE-2010-0684 of ActiveMQ none of the three
fix commits (2895197, fed39c3, and 9dc43f3) added any test. Be-
sides, FixCommits can only be run when the fix commit is known,
which is not the case for all vulnerabilities disclosed on CVE—while
VuTeCo can be used regardless of the fix commit. For these reasons,
FixCommits is treated as another heuristic method rather than a
ground truth.

3.2 In-the-wild Evaluation (RQ2)
The evaluation in the wild aimed to assess the practical usefulness
of VuTeCo, i.e., whether it can find new security-related test cases
and match them with the right vulnerability. We prepared VuTeCo
according to the configuration described in Section 2, which re-
sulted from the experimental evaluation (Section 3.1). This time, we
retrained and exported the best models for each task by merging
the test sets into their corresponding training sets, since the test
sets were no longer needed at this stage.

The dataset comprised open-source Java projects and their vul-
nerabilities that we selected from VuTeCo’s internal knowledge
base of 1,992 vulnerabilities (introduced in Section 2). First, we dis-
carded 60 vulnerabilities that were also part of Vul4J; indeed, they
had already been used to train VuTeCo, and we already know their
witnessing tests. We discarded 19 more vulnerabilities that had no
CVE descriptions, preventing us from running the Matching task.
Then, we assessed the accessibility of their related projects, discard-
ing those without a remote URL or that were no longer accessible,
which resulted in the removal of an additional 61 vulnerabilities.
We manually reviewed all remaining repositories to remove dupli-
cates (e.g., mirrored repositories hosted outside GitHub) and those
containing testing libraries (e.g., JUnit), since these are not used
during deployment. This step eliminated 21 duplicate repositories
and 2 testing projects. Since we had no guidance on when exactly
the witnessing tests were added, we selected the latest revision of
each repository (i.e., the HEAD of the respective default branches)
on May 21, 2025—indeed, even after a vulnerability has been fixed,
any witnessing tests that developers wrote might still be part of the
test suites. Therefore, the input given to VuTeCo for both tasks was
a project’s repository (remote URL) and its latest revision. Besides,
for the Matching task, VuTeCo also requires a list of historical
vulnerabilities that affected it (from the knowledge base).

At this point, we applied the test case retrieval heuristics (Sec-
tion 2.1) to ensure the projects had valid test suites. This revealed
388 projects without any tests that VuTeCo could process. After
all these steps, we obtained 427 projects and 1,238 vulnerabilities.
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The 427 projects had a total of 1,105,491 test cases, which were
given to VuTeCo for the Finding task. The Finder model required 3
days to classify all test cases. All valid combinations of test cases
and vulnerabilities resulted in 5,451,212 pairs. The Matcher model
required 36 days to process and classify all of them.

We assessed the correctness of VuTeCo in both tasks by mea-
suring its precision, i.e., the proportion of positive classifications
that are correct. We extracted all the test cases flagged as “Security”
(Finding) and the pairs of test cases and vulnerabilities flagged as
“Matched” (Matching). From this evaluation, we disregarded the 108
vulnerability-witnessing test cases that also appear in Vul4J—as
they have been used to train VuTeCo before its deployment in the
wild. We then involved two independent researchers with experi-
ence in software security and unit testing. They were instructed
to indicate whether a classification was correct, so that we could
compute the true and false positive predictions. We used Cohen’s
Kappa score [12, 41] to measure the agreement between the two
inspectors. The two inspectors discussed all cases of disagreement
and reached a consensus to resolve them. We could not measure
recall because it required an infeasible labeling session involving
more than one million test methods before launching VuTeCo.

4 Evaluation Results

4.1 Experimental Results (RQ1)
4.1.1 Finding Task. Table 1 reports the performance of the six
evaluated models and the three baseline approaches in their best
configurations for the Finding task on 𝑇𝐸𝐹 extracted from Vul4J
(the other configurations are in the replication package [30]). The
best model was UniXcoder [21], achieving an 𝐹0.5 score of 0.73,
supported by a high precision of 0.83. This means that it can often
recognize real vulnerability-witnessing tests, with minimal false
positives (just two). In other words, the tests that it flags are very
likely to be security-related. The good performance of UniXcoder
was also confirmed by the high MCC score of 0.61, indicating a
strong positive correlation with the ground truth (following the
same interpretation of Pearson’s correlation coefficient [49]). UniX-
coder identified 10 out of 21 vulnerability-witnessing tests in 𝑇𝐸𝐹 ,
resulting in an unremarkable recall score of 0.48. Still, this was the
highest recall across all tested models. UniXcoder had slightly lower
precision than Qwen2.5-Coder, which was 0.88; however, this was
due to a single false positive.

As also reported in Section 2, the best configuration of UniX-
coder is trained using the Weighted Binary Cross-entropy loss to
handle the large class imbalance. Given this, augmenting the train-
ing set was unnecessary (in fact, it was even counterproductive).
Compared to the configuration using the standard Binary Cross-
entropy, the improvement in 𝐹0.5 score was 23%, from 0.56 to 0.73.
Thus, we observed that the weighted loss brought the expected
benefit. On the contrary, the data augmentation techniques did not
significantly contribute to improving performance—only SPAT [65]
marginally enhanced the 𝐹0.5 score when the standard loss func-
tion was used. The same happened for the runner-up model, i.e.,
Qwen2.5-Coder, whose best configuration (with a 0.66 𝐹0.5 score)
also adopted the weighted loss and no data augmentation. From

Table 1: Performance of the six main AI models and three

baselines (best configurations) for the Finding task.

Approach Performance

Pr Re F1 F0.5 MCC TP FP

CodeBERT 0.78 0.34 0.47 0.61 0.51 7 2
CodeT5+ 0.70 0.33 0.45 0.57 0.48 7 3CR

M

UniXcoder 0.83 0.48 0.61 0.73 0.63 10 2
CodeLlama 0.69 0.43 0.53 0.62 0.54 9 4

DeepSeek Coder 0.69 0.43 0.53 0.62 0.54 9 4LL
M

Qwen2.5-Coder 0.88 0.33 0.48 0.66 0.54 7 1

GrepFind 0.01 0.24 0.03 0.02 0.05 5 375
VocabFind𝑌𝐴𝐾𝐸 0.08 0.05 0.06 0.07 0.06 1 11

Ba
se
lin

e

VocabFind𝐼𝑑𝑒𝑛 0.02 0.10 0.03 0.02 0.04 2 114

a broader perspective, we observed that CRMs performed compa-
rably to LLMs. However, given their faster training and inference
times, CRMs are the best choice for this task.

Among the baseline approaches, none achieved satisfactory re-
sults. GrepFind successfully classified just five witnessing tests in
the right class, despite the wide set of keywords that we prepared.
This suggests that developers frequently employ non-obvious terms
when writing security-specific test cases. In any case, this resulted
in 375 false positives, rendering it unhelpful. Even after fitting a
vocabulary of terms from the training set using VocabFind𝑌𝐴𝐾𝐸 and
VocabFind𝐼𝑑𝑒𝑛 , we still experienced poor performance. To improve
these approaches, a more curated list of security-related keywords
inferred from real-world examples is required. However, achieving
this requires a larger collection of vulnerability-witnessing test
cases, which is actually the primary goal of this work.

4.1.2 Matching Task. Table 2 reports the performance of the six
evaluated models and the three baseline approaches in their best
configurations for the Matching task on𝑇𝐸𝑀 extracted from Vul4J
(the other configurations are in the replication package [30]). The
best model was DeepSeek Coder [22], achieving an 𝐹0.5 score of
0.65, supported by a high precision of 0.75. This means that it can
often validate pairs of test cases and vulnerability descriptions, with
minimal false positives (just three). In other words, the matches
that it returns are very likely to be valid. This is also confirmed by
the MCC score of 0.57, indicating a strong positive correlation with
the ground truth [49].

Unlike the Finding task, the best model belongs to the LLM group.
This DeepSeek Coder model was trained in “full-train” mode (PT-
FT), which made a pre-training on 𝑇𝑅′

𝑀
(the simplified Matching

task) for eight epochs and then the fine-tuning on 𝑇𝑅𝑀 (the reg-
ular Matching task) for five epochs. Both training datasets were
augmented with SPAT [65] (ran five times). This confirmed that
the model benefited from the two-phase training. Indeed, com-
paring this version with the configuration that only performed
fine-tuning (FT) on𝑇𝑅𝑀 , the 𝐹0.5 score went from 0.58 to 0.65, due
to an improved precision (from 0.64 to 0.75) and the same recall.
The other LLMs, by contrast, achieved their best performance with
only fine-tuning (i.e., pre-training actually lowered their scores).
The effectiveness of two-phase training appears to vary with the
specific model, making it an impactful factor. Furthermore, all LLMs
showed consistent benefits from data augmentation. This is likely
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Table 2: Performance of the six main AI models and four

baselines (best configurations) for theMatching task.

Approach Performance

Pr Re F1 F0.5 MCC TP FP

CodeBERT 0.60 0.29 0.39 0.49 0.41 6 4
CodeT5+ 0.71 0.23 0.36 0.51 0.41 5 2CR

M

UniXcoder 1.00 0.24 0.39 0.61 0.49 5 0

CodeLlama 0.64 0.43 0.51 0.52 0.58 9 5
DeepSeek Coder 0.75 0.43 0.55 0.65 0.57 9 3LL

M

Qwen2.5-Coder 0.86 0.29 0.43 0.61 0.50 6 1
GrepMatch 0.50 0.14 0.22 0.33 0.27 3 3

SimMatch𝑌𝐴𝐾𝐸 0.01 0.10 0.02 0.01 0.03 2 220
SimMatch𝐶𝑅𝑀 0.33 0.05 0.09 0.15 0.12 1 2Ba

se
lin

e

FixCommits 0.30 0.57 0.39 0.41 0.32 12 29

due to the inability to employ a weighted loss function as we did
with the CRMs.

Regarding the CRMs, the integrated use of two sub-models (one
for the Finding part and one for the simplified Matching) was not
sufficient to outperform DeepSeek Coder. Nevertheless, the two
UniXcoder sub-models ranked second, with perfect precision but
very low recall (0.24). The two sub-models have been integrated
with the “Mask” style (described in Section 3.1.3) and were pre-
trained on 𝑇𝑅𝐹 and 𝑇𝑅′

𝑀
but without fine-tuning on 𝑇𝑅𝑀 . This

configuration was significantly better than the equivalent config-
uration without the integration (i.e., only one UniXcoder), which
had an 𝐹0.5 score of 0.01. Upon closer inspection of the other CRMs,
“Mask” was the style that benefited from pre-training alone, as
all the other integration styles did not perform well without fine-
tuning. This observation aligns with how “Mask” operates. With
the exception of the “Mask” style, the “full-train” mode was the
most effective way to train the CRMs. Thus, if faster inference is
needed at the cost of recall (so, with a higher expectation of valid
matches misclassified as invalid), UniXcoder is the best option.

Overall, the performance in this task is slightly lower than what
was observed in the Finding task. This was anticipated because the
Matching task appears more challenging: It requires the model to
comprehend both the test method and the vulnerability description,
which are presented in two different languages (Java and English).

Among the baseline approaches, SimMatch performed poorly.
The SimMatch𝐶𝑅𝑀 flavor achieved greater precision, but at the
cost of reducing the detection rate almost to zero (only one true
positive and two false positives). Despite its simplicity, GrepMatch

(with two required hits) achieved higher precision, i.e., 0.50. This
indicates that when we searched for two terms within the vulnera-
bility descriptions in the test case text, we could validate 50% of the
true pairs. This method appears suitable as an initial, lightweight
approach for quickly matching a few test cases with vulnerabili-
ties (i.e., the “low-hanging fruit”). Unfortunately, this method also
missed many cases (0.14 recall).

Overall, the best baseline approach was FixCommits, achieving
0.41 𝐹0.5 score and 0.32 MCC score. Although its performance re-
mains lower than that of any of the six AI models, its recall score
of 0.57 was the highest among all—namely, it correctly classified 12
valid pairs, albeit at the cost of several false positives (29). We shed
further light on the unique contribution of this baseline andwhether
it can complement the findings of the best AI model (DeepSeek

Coder). Hence, we selected the valid pairs only (i.e., the 21 positive
instances in 𝑇𝐸𝑀 ) and conducted an overlap analysis between the
two approaches. We observed that they agreed on five out of 21
cases, with seven cases validated by FixCommits only, and four by
DeepSeek Coder. Both missed five matches (false negatives). In
total, their agreement—measured through the Jaccard index—on
the positive classifications was 0.31, meaning that they shared the
same judgment in approximately 1 out of 3 cases. Although the
intersection of their predicted sets can reduce the number of false
positives to zero, and so maximize the precision to maximum, it
also drastically reduces the recall to 0.24 (-58% compared to Fix-

Commits). Hence, in this case, the union could be more beneficial
as it increases the recall to 0.76 (+33% compared to FixCommits),
though this would also reduce precision to 0.5 (-33% compared to
DeepSeek Coder). In any case, it is worth noting that this joint use
is only possible when the fix commits of a vulnerability are known
and accessible; otherwise, we are unable to use FixCommits.

¬ Answer to RQ1. UniXcoder is the best model for find-
ing security-related unit tests with minimal false positives,
achieving 0.73 𝐹0.5 score, 0.83 precision, and 0.63 MCC score.
DeepSeek Coder is the best model for matching unit tests
and vulnerabilities with minimal false positives, achieving
0.65 𝐹0.5 score, 0.75 precision, and 0.57 MCC score.

4.2 In-the-wild Results (RQ2)
4.2.1 Finding Task. As a result of the experimentation in RQ1,
VuTeCo uses UniXcoder for the Finding task. After processing
1,105,491 test cases (from a total of 427 projects), VuTeCo flagged
319 test methods as “Security” , found in 83 projects. Among these,
the manual assessment confirmed that 224 were covering security-
related aspects—i.e., VuTeCo scored 0.70 precision. The inspectors
agreed on 294 (92%) cases, with 0.81 Cohen’s Kappa score, indicating
a strong inter-rater agreement. Afterward, they jointly reviewed
the remaining 25 cases, where they had conflicting judgments, until
they reached consensus.

The precision score in the wild is not much far from the 0.83
observed during the experiment in RQ1—indeed, a non-negligible
drop was anticipated. Thus, the transfer of the Finder model in the
wild mostly preserved its capability. We observed that VuTeCo was
misled by test cases containing keywords commonly associated with
vulnerabilities, even though these tests did not actually uncover any
security issues. For instance, a test case in Apache Struts contains
terms like ‘bad’, ‘pollution’, and ‘inject’—which are often found in
security vocabularies—despite having a different meaning there [3].
Besides, we observed that test cases containing constant strings
such as paths (e.g., URLs or file paths), shell commands, version
numbers, or hashes are more likely to be incorrectly flagged. Such
problems could be addressed by introducing fine-grained semantic
analyses and improved keyword matching to substantially reduce
the number of false positives.

4.2.2 Matching Task. As a result of the experimentation in RQ1,
VuTeCo uses DeepSeek Coder for the Matching task. After pro-
cessing 5,451,212 pairs of test cases and vulnerability descriptions,
VuTeCo flagged 96 pairs as “Matched” , involving 35 unique tests
from 19 projects. Among these, the manual assessment confirmed
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that 45 were correct, i.e., VuTeCo scored 0.47 precision. The inspec-
tors agreed on 85 (89%) cases, with 0.77 Cohen’s Kappa score, indi-
cating a substantial inter-rater agreement. Afterward, they jointly
reviewed the remaining 11 cases in which they had conflicting
judgments until they reached consensus.

Unlike the Finding task, here we observed a larger drop in preci-
sion than the 0.75 achieved during experimentation in RQ1. Many
of the invalid matches were due to the similarity between the terms
in the test case and the CVE description (just as in the Finding

case). This decline in precision can be attributed to two main rea-
sons: (i) The 427 projects chosen for this assessment might have
no valid match at all, whereas the 51 projects used in RQ1 were
guaranteed to have at least one valid match; (ii) the number of
vulnerabilities for each project is higher than in RQ1, particularly
for large projects like Spring Framework or Jenkins. Therefore,
there is a natural distribution shift that increases the likelihood
of false positives. Despite these issues, the transfer of the Matcher

model in the wild was deemed acceptable, though it requires further
improvements, including better prompting and safeguards against
misleading terms.

In the end, the 35 tests correctly matched with the right vulnera-
bility were added to the new dataset Test4Vul [30] alongside the
224 security-related tests from the Finding task, totaling 259.

¬ Answer to RQ2. VuTeCo found 224 security-related
test cases in the wild, i.e., 70% of all tests returned. The false
positives were primarily due to security-related terms and
constant strings appearing in the test code. Then, VuTeCo
returned 45 correct matches, i.e., 47% of the total matches.
Test code and CVE descriptions sharing a similar vocabulary
led to incorrect matches.

5 Discussion

The Retrieval of Witnessing Tests. The main advantage of
VuTeCo lies in its fully static nature. A dynamic assessment would
require building an entire project and setting up the environment
to execute all test cases, which may not always succeed due to
dependency issues. The extent of the results that VuTeCo returned
in the wild (RQ2) permits manual inspections to be done in a rea-
sonable time. Indeed, VuTeCo greatly reduced the search space
by four orders of magnitude, from millions to a few hundred cases.
Hence, VuTeCo is designed as a lightweight assessment tool to
find vulnerability-witnessing tests before proceeding to a more
comprehensive dynamic assessment. Despite the positive results
obtained from the experimental evaluation (RQ1), the retrieval of
vulnerability-witnessing tests remains a challenging task. We fur-
ther examined the errors made by VuTeCo to identify potential
improvements. The main reason is attributable to the vocabulary
of the test code. As observed, terms related to security and certain
constant strings often lead AI models into error, likely due to their
similarity to the vocabulary of the positive instances in the training
sets for the Finding and Matching tasks. This problem highlighted
the need for a dedicated pre-training session to enable the model
to adapt its vocabulary to the testing and security domains. Be-
sides, denoising the input test method to remove excessively long
strings and version numbers could be beneficial. Concerning the
Matching task, the errors were also due to the limited understanding

of the vulnerability, caused by the too short description given by
CVE. This could be mitigated by adding additional sources to fully
comprehend the vulnerability, e.g., issue trackers and mailing lists.

The Usefulness of Witnessing Tests. The release of Vul4J
in 2022 paved the way for numerous software security tasks. The
ability of VuTeCo to find security-related tests can help expand the
known body of vulnerability-witnessing tests, enabling activities
like the automated generation of security unit tests [11, 19, 32].
Nevertheless, the potential applications of vulnerability-witnessing
tests extend far beyond this [48]. For example, the witnessing tests
can act as proofs-of-concept supporting the automatic generation of
realistic exploits, building on advances in security test generation
models [11, 19]. Besides, they can support the automated vulnera-
bility repair (AVR) process by localizing the vulnerable statements
or assessing the plausibility of a generated patch [7, 46, 55, 68].
We also envision using witnessing tests to support the retrieval
of vulnerability-contributing commits [6, 24], as they can be run
to triangulate when a vulnerability was introduced in a project;
to the best of our knowledge, this task has not been investigated
yet. Additionally, software engineers can benefit from access to
a variety of example test cases. For instance, they can reuse tests
from past vulnerabilities to address similar issues in their projects.
The dataset Test4Vul, which we publicly release for the research
community [30], is designed to achieve such foreseen applications.

TheAnatomyofWitnessingTests.The retrieval of witnessing
tests is challenging mainly due to the lack of empirical knowledge
on what such tests look like. To date, no study has outlined a
clear profile of tests that witness vulnerabilities or, more broadly,
unit tests focused on security. The absence of characterization of
vulnerability tests entails a significant knowledge gap, especially
when compared with traditional functional tests. For instance, we
are unaware of the setup required before calling the vulnerable
component, what assertions should examine, or the number of
tests required to “cover” all relevant scenarios for a vulnerability
type. The only commonality between the two test types is that
they both aim to identify undesirable behaviors in the code that
violate certain requirements or properties. We believe this lack
of knowledge might be ascribable to the difficulty in formulating
security requirements at the unit/component level (i.e., methods or
classes) since they are often considered at the system level [16, 39].
Unfortunately, shedding light on these aspects requires numerous
examples of witnessing tests. In fact, this study was conducted
to address this shortage by providing an approach (VuTeCo) to
expand the knowledge base of witnessing tests and to draw more
attention to this topic. Once a line is drawn between vulnerability-
witnessing tests and traditional tests, innovative solutions can be
designed to help developers write more security tests.

6 Threats to Validity

We carefully addressed potential sources of data leakage that could
affect the validity of VuTeCo’s performance. During the experimen-
tal evaluation (RQ1), the two pre-training datasets for Matching

task (see Section 3.1.3), i.e., 𝑇𝑅𝐹 and 𝑇𝑅′
𝑀
, were cleaned from test

methods and vulnerability descriptions appearing in the test set
𝑇𝐸𝑀 . During the evaluation in the wild (RQ2), we ignored any
known vulnerability-witnessing test case from Vul4J, as all have
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been used to train VuTeCo’s models. We also acknowledge that the
original pre-training of the CRMs and LLMs might have seen some
of the test methods used in our evaluation, raising the possibil-
ity of data contamination. Nevertheless, the Finding and Matching

classification tasks were different from the objectives of such pre-
training, which focused on predicting missing code tokens. Namely,
the models had no prior knowledge about whether a certain test
method was security-related or linked to specific vulnerabilities.

The three LLMs experimented with are also available in larger
variants, reaching up to ∼30 billion parameters. We opted for the
∼7 billion versions due to memory and computational constraints.
This provided a reasonable balance between capability and effi-
ciency [31], especially given the large dataset sizes for the two
tasks and the many configurations we tested.

The 336 configurations tested in the experimental evaluation
(RQ1) explored key factors affecting performance. While additional
designs were possible, resource limitations made further testing
impractical. RQ1 focused on the model types (CRMs and LLMs),
which were hypothesized (and confirmed) to have a relevant impact.

VuTeCo has been trained on JUnit test methods from projects
appearing in Vul4J. The results cannot be generalized as-is to other
programming languages or testing frameworks (e.g., TestNG). We
focused on Java because of Vul4J, which provides validated exam-
ples of witnessing tests. Java remains a relevant language to analyze
from a security perspective, as it continues to exhibit new vulnera-
bilities [61]. The results could also not be extended to vulnerability
types not existing in Java, e.g., memory-related vulnerabilities, or
underrepresented in Vul4J, such as ‘OS Command Injection’ (CWE-
78) that had only one test case [8]. We partially mitigated this lack
of examples during training using data augmentation.

7 Related Work

Test Case Classification. No research has classified test cases to
identify those related to security. Existing studies primarily focused
on determining whether a test exhibits flaky behavior. Fatima et
al. [15] presented Flakify, a data-driven approach to detect flaky
tests in Java projects. Flakify leverages a pre-trained CodeBERT
and a feed-forward neural network to predict whether a JUnit test
method had a flaky behavior. Flakify achieved 0.79 and 0.73 F1
scores on two different experiments on FlakeFlagger dataset [2],
while achieving 0.98 and 0.89 F1 score on IDoFT dataset [34], outper-
forming state of the art approaches. Somewhat similarly, FlakyCat
exploits few-shot learning to predict the exact category of flakiness
of JUnit tests [1]. FlakyCat relies on a pre-trained CodeBERT
to create the embeddings of test cases and a Siamese Network to
project the embeddings into a space where tests of the same flak-
iness category appear similar (based on cosine distance). This is
enacted by the Triplet Loss function [57] during the training.

Security Unit Testing. Existing works focused on generating
test cases for third-party vulnerabilities, i.e., those indirectly added
through dependencies (e.g., libraries) rather than introduced by
the project developers. Kang et al. [32] introduced Transfer to
generate security test cases for Java projects affected by vulnerable
library dependencies. Transfer builds on existing vulnerability-
witnessing tests mined from the upstream library project and tries
to generate a test case targeting the client project that recreates the

same program state generated by the execution of the witnessing
test in the original library. This approach uses a genetic algorithm to
find a client test that “mimics” the library test’s behavior. Transfer
successfully generated security tests for 14 known library vulnera-
bilities in 23 client projects. Later, Transfer was extended by Chen
et al. [11] by including a migration step, which helps ensure that
generated tests from client projects are similar to the original vul-
nerability tests. Their tool, Vesta, outperforms Transfer by 53% in
test generation effectiveness on a dataset of 30 Java vulnerabilities.
More recently, Gao et al. introduced VulEUT [19], which combines
static call graph analysis to find out the triggering conditions and a
GPT-3.5-Turbo model to generate the concrete unit tests. VulEUT
succeeded in 56/70 cases, whereas VESTA only succeeded in 45.

8 Conclusion

We presented VuTeCo, a framework for finding security-related
tests in Java projects and matching them to their corresponding vul-
nerabilities. The experimental evaluation (RQ1) identified promis-
ing AI models for Finding andMatching tasks, while the assessment
in the wild (RQ2) demonstrated the usefulness of VuTeCo. The
manually-confirmed tests have been collected in a novel dataset,
Test4Vul, which we have publicly released. VuTeCo is the first
solution explicitly addressing the problem of finding security unit
tests in software repositories, laying the foundation for future re-
search in this area.

After extensive experimentation, we identified several ways to
improve VuTeCo. The maximum input size for VuTeCo’s AI mod-
els could be expanded to include contextual information, such as
the production code (e.g., the vulnerable class or method) or a
natural-language summary of the test cases. Namely, the Matching

could use additional textual sources like security bug reports or
commit messages [6, 29, 35, 47, 69] to improve its accuracy. Then,
the Matching task could replace its “pair-wise” classification style
with a “zero-shot” scheme, allowing it to evaluate a set of candidate
vulnerabilities at once rather than individually, thereby reducing
the overall number of predictions. Lastly, VuTeCo could include
an automated dynamic assessment of the retrieved tests to confirm
that they can trigger the matched vulnerability as expected.

Data Availability

The paper’s replication package is available on FigShare [30].
It contains the implementation of VuTeCo (as in this paper), the
dataset Test4Vul, the scripts to reproduce the experiments, and
the resulting raw and processed data.
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