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Abstract. Just-in-Time (JIT) vulnerability prediction is critical for proac-
tively securing software, yet its effectiveness heavily relies on the qual-
ity of the ground truth used for training models. This ground truth
is commonly established using variants of the SZZ algorithm to iden-
tify vulnerability-contributing commits (VCCs). However, the impact of
choosing a specific SZZ variant on model performance remains largely un-
explored. In this study, we systematically investigate the effect of eight
SZZ variants on JIT vulnerability prediction across seven open-source
Java projects. Our findings reveal that the choice of the SZZ variant is a
non-trivial factor. Models trained with datasets labeled by variants like
B-SZZ, V-SZZ, and VCC-SZZ achieve strong and stable predictive
performance, with median MCC scores often exceeding 0.50. In
contrast, variants such as L-SZZ and R-SZZ produce models that per-
form no better than random chance, with median MCC scores close
to 0.0. This performance gap demonstrates that an inappropriate SZZ
variant can invalidate prediction models, underscoring the necessity of a
principled approach to defining ground truth.

1 Introduction

Just-in-Time (JIT) vulnerability prediction aims to identify security-introducing
commits before they are integrated into a codebase, providing a first line of
defense in modern software development [22,19]. The performance of the machine
learning models at the core of this task depends heavily on the ground truth—the
labeled dataset of vulnerable and clean commits used for their training. Given
the infeasibility of manual labeling, researchers universally rely on automated
heuristics. The most established one is the SZZ algorithm [28], which identifies
vulnerability-contributing commits (VCCs) retroactively.

However, SZZ is not a single algorithm but a family of variants, each employ-
ing different heuristics. For instance, some variants, like B-SZZ, rely on basic
line-level history tracing, while more advanced ones, like V-SZZ, implement
complex logic to trace a vulnerability’s origin across multiple commits. This
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proliferation of approaches, combined with a lack of comparative studies in the
vulnerability context, creates a critical uncertainty: researchers and practitioners
are left to choose a variant without understanding the downstream consequences
of their choice. This raises the fundamental question of how, and to what extent,
the selection of an SZZ variant influences the resulting JIT vulnerability predic-
tion models.

To address this gap, we conduct a large-scale empirical study on seven Java
projects, investigating the impact of eight distinct SZZ variants. We assess both
the agreement between the ground truths they generate (RQ1) and, more im-
portantly, the downstream effect on the performance of JIT prediction models
(RQ2). Our results reveal a performance gap that depends on the chosen vari-
ant. We found that models built using ground truths from B-SZZ, V-SZZ, and
VCC-SZZ are consistently effective, achieving high predictive power (median
MCC > 0.50). Conversely, models relying on L-SZZ and R-SZZ completely
fail, delivering performance equivalent to a random guess (median MCC ∼ 0.0).

This paper provides the following contributions:

– We systematically evaluate, for the first time, the impact of eight SZZ vari-
ants on vulnerability prediction, demonstrating that the choice of the labeling
heuristic is a critical factor.

– We provide clear, empirical evidence that certain variants (L-SZZ, R-SZZ)
are unsuitable for this task and can lead to unreliable, near-random models.

– We offer actionable guidance for researchers and practitioners, identifying
a set of reliable SZZ variants (B-SZZ, V-SZZ, VCC-SZZ, MA-SZZ) that
provide a solid foundation for building effective JIT prediction models.

2 Background and Related Work

Research in vulnerability prediction has evolved from file-level analysis [27,32] to
finer-grained, commit-level Just-in-Time (JIT) approaches. These JIT models,
studied in works like those by Lomio et al. [19] and Nguyen et al. [22], offer
immediate feedback but their effectiveness depends on reliable ground truth of
vulnerability-contributing commits (VCCs). Since manual labeling is impractical,
the de facto standard is to use the SZZ algorithm to automatically identify
VCCs [28]. Our study builds on the dataset established by Lomio et al. [19]
to investigate a critical, often-overlooked aspect: the impact of the SZZ variant
choice on the final model.

The SZZ algorithm exists in numerous variants, each with distinct heuristics.
The implementation and correctness of these variants have been systematically
studied by Rosa et al. [26], who provided both a unified tool, PySZZ, and a
developer-informed oracle to evaluate them. Their work highlights the concrete
implementation differences between variants like B-SZZ [28], which uses sim-
ple line-based annotation, and more advanced ones like V-SZZ [2], tailored for
vulnerabilities. Despite their widespread use, the relative impact of these vari-
ants on JIT vulnerability prediction remains unaddressed. A full description of
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the eight variants we investigate, implemented through PySZZ, is available in
Table 1.

The most related study to ours is by Fan et al. [11], who investigated the
impact of SZZ variants on JIT defect prediction. They found that B-SZZ and
MA-SZZ had minimal negative impact, while AG-SZZ degraded performance.
Our work is different and complementary: (1) we focus on the more critical
domain of vulnerability prediction, not general defects; (2) we analyze a
broader and more modern set of eight SZZ variants, including those used in
studies like Lomio et al.’s [19]; and (3) we evaluate not only model performance
but also the agreement between the ground truths themselves. This study,
therefore, provides the first comprehensive analysis of the Ground Truth Effect
in the specific context of JIT vulnerability prediction.

3 Research Method

The goal of this study is to investigate how data labeling techniques impact JIT
vulnerability prediction models’ ground truth. The purpose is to understand
which SZZ techniques yield better-performing and more stable JIT vulnerability
prediction models. This study targets researchers interested in ground truth
impact on JIT vulnerability prediction and developers who may adopt these
models in their projects.

The study addresses two research questions. First, we investigate how dif-
ferent SZZ techniques compare in retrieving VCCs to assess their similarities,
differences, and impact on ground truth construction.

Second, we assess how SZZ technique differences affect ground truth by train-
ing and validating machine learning models on resulting datasets, evaluating the
impact of VCC variations on predictive performance.

ü RQ1. How similar are the different SZZ techniques in retrieving
vulnerability-contributing commits?

ü RQ2. How do the performances of models vary depending on the SZZ
technique used to build the ground truth?

To answer these questions, we conducted a mining software repository study,
collecting VCCs using eight SZZ variants. We compared the resulting datasets
to assess overlap, identify labeling discrepancies, and evaluate their impact on
model performance. Figure 1 summarizes our methodology adhering to the ACM
SIGSOFT Empirical Research Standards [1].

3.1 Ground Truth Construction and Experimental Setup

VCC Identification. Starting from the fixing commits identified by Lomio
et al. [19], we used the PySZZ tool [26] to run eight distinct SZZ variants
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Fig. 1: Overview of our research methodology, from data collection to perfor-
mance analysis.

Table 1: The eight SZZ variants analyzed in our study.
Variant Core Heuristic

B-SZZ [28] Basic ‘git annotate‘ on deleted lines.
AG-SZZ [17] Traverses annotation graph; ignores cosmetic changes.
MA-SZZ [8] Like AG-SZZ, but also ignores meta-changes.
R-SZZ [9] Like MA-SZZ, but only considers the most recent commit.
L-SZZ [8] Like MA-SZZ, but only considers the largest commit.
RA-SZZ [21] Like MA-SZZ, but ignores refactoring-related lines.
VCC-SZZ [16] Advanced filtering; ignores test/build files, blames more lines.
V-SZZ [2] Repeats ‘git blame‘ until origin; vulnerability-specific filters.

and identify VCCs. The variants, summarized in Table 1, include both general-
purpose (e.g., B-SZZ) and vulnerability-specific (e.g., V-SZZ) algorithms.
Controlled Experiment Design. For each of the eight variants, we created
a distinct dataset. To isolate the effect of the labeling heuristic, these datasets
differ only in their positive instances (the VCCs). The set of negative instances
was sampled once (at a 1% ratio relative to project size, following [19]) and
kept identical across all eight datasets. This controlled setup ensures that any
observed performance difference is directly attributable to the SZZ variant used.
Model Training and Validation. We adopted two groups of commit-level
metrics: product metrics capturing structural aspects of modified code (main
Chidamber & Kemerer metrics [7]: LOC, WMC, CBO, RFC, DIT, NOC) and
process metrics capturing code evolution and modification history (added and
removed lines, modified files, author’s prior commits, modification entropy, au-
thor’s workload). These metrics, shown to be effective in prior vulnerability re-
search [19,27,32,24], model developer context as factors like inexperience or high
workload correlate with defect introduction [32]. Complete metric descriptions
are in our online appendix [5].

The target variable is a binary label indicating whether each commit is a
VCC (1) or not (0). This labeling was performed separately for each of the eight
SZZ variants, resulting in eight ground truth versions with varying VCC counts
per project.
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Following prior work [19,20], we selected six machine learning algorithms: De-
cision Tree [4], Random Forest [3], Extra Trees [15], K-Nearest Neighbors [31],
Linear Support Vector Classifier [29], AdaBoost [13], and Gradient Boosting [14].
Model training involved three stages: (1) removing collinear features using Vari-
ance Inflation Factor (VIF) to reduce overfitting risk [23]; (2) addressing class im-
balance through SMOTE [6] on training data; and (3) hyperparameter optimiza-
tion via Random Search [23,18]. We employed Leave-One-Group-Out (LOGO)
cross-validation for cross-project evaluation, where each project serves as a test
set once across seven iterations. This approach better reflects operational con-
ditions where models must generalize to unseen projects.

3.2 Data Analysis Protocol

To address RQ1, we analyzed SZZ variant overlap using Jaccard similarity [25]
between VCC sets for each vulnerability-fix pair, creating distributions rather
than single scores. We applied Wilcoxon signed-rank tests [30] comparing these
distributions against baselines of total disagreement (all zeros) and perfect agree-
ment (all ones). A p < 0.05 indicates a significant difference from the baseline.

To address RQ2, we evaluated model performance using the Matthews
Correlation Coefficient (MCC), which provides a balanced measure suitable
for imbalanced datasets. We applied Friedman tests [10] for each ML algorithm
to determine if SZZ variant choice significantly impacts performance, followed by
post-hoc Nemenyi tests [10] when significant differences were found (p < 0.05).

4 Results and Discussion

4.1 RQ1: How similar are the SZZ variants?

To answer RQ1, we measured the overlap between the VCC sets generated by
each pair of SZZ variants using the Jaccard similarity. Our statistical analy-
sis confirms that while the variants are not completely disjoint, they are also
not interchangeable (p < 0.05 against both baselines of 0 and 1, see online ap-
pendix [5]).

The descriptive analysis reveals the practical extent of this divergence. On
average, any two variants agree on only half of the VCCs they identify (mean
Jaccard index ~0.50, std. dev. 0.30). The agreement ranges from a high of 0.89
for the most similar pair to a low of 0.29 for the most dissimilar.

¤ Key Findings for RQ1

SZZ variants are only moderately similar and cannot be used interchange-
ably. On average, two variants agree on only 50% of the identified vulnerable
commits, creating substantially different ground truths for training predic-
tion models.
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Fig. 2: MCC distributions for four representative classifiers. Variants like L-SZZ
and R-SZZ consistently yield poor models (MCC ∼ 0.0), while B-SZZ, V-SZZ,
etc., lead to effective ones (MCC > 0.5).

4.2 RQ2: What is the impact on model performance?

To answer RQ2, we trained seven machine learning models on the eight distinct
ground truths and evaluated their performance using the Matthews Correlation
Coefficient (MCC). Figure 2 shows the MCC distributions for four representative
classifiers. The results reveal a performance gap driven by the SZZ variant. A
clear pattern emerges across all models: ground truths from L-SZZ and R-
SZZ consistently lead to models with near-random performance, with median
MCC scores close to 0.0. In contrast, variants like B-SZZ, V-SZZ, MA-SZZ,
and VCC-SZZ consistently produce effective models, with median MCC scores
often exceeding 0.50, especially for sensitive classifiers like Gradient Boosting and
Decision Tree.

To validate these observations, we performed a Friedman test for each classi-
fier. As shown in Table 2, the choice of SZZ variant has a statistically significant
impact (p < 0.05) on the performance of the most sensitive models (e.g., Decision
Tree, Gradient Boosting, Random Forest). Post-hoc Nemenyi tests (detailed in
the online appendix [5]) confirm that for these models, the performance degra-
dation caused by L-SZZ and R-SZZ is statistically significant when compared to
top-performing variants like B-SZZ and VCC-SZZ.

¤ Key Findings for RQ2

The choice of the SZZ variant is a factor that can make the difference between
an effective prediction model and a useless one. Inappropriate variants (L-
SZZ, R-SZZ) lead to models with near-random performance (MCC ~0.0),
while other variants (B-SZZ, V-SZZ, VCC-SZZ, MA-SZZ) enable models to
achieve high predictive power (median MCC > 0.50).

4.3 Discussion and Implications

Our findings have direct implications for researchers and practitioners. The most
critical one is a clear warning: using L-SZZ or R-SZZ for JIT vulnerabil-
ity prediction is not efficient. These variants, relying on overly simplistic
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Table 2: Friedman test results (p < 0.05) on MCC scores. A ✓ indicates a
significant performance difference across SZZ variants.

Classifier MCC Significant?

AdaBoost NS
Decision Tree ✓
Extra Trees NS
Gradient Boosting ✓
K-Nearest Neighbors NS
Linear SVC NS
Random Forest ✓

heuristics, systematically produce noisy ground truths that prevent models from
learning meaningful patterns.

Conversely, our results provide a set of recommended variants: B-SZZ,
V-SZZ, MA-SZZ, and VCC-SZZ. These provide a more reliable basis for
model training. Notably, the original B-SZZ remains a strong baseline, suggesting
that complexity is not always a synonym for better performance in this context.

Furthermore, the impact is mediated by the ML model. Sensitive classi-
fiers like Gradient Boosting amplify the differences in ground truth quality, while
robust or simpler ones like LinearSVC are less affected (though often at the cost
of lower overall performance). This implies that the reported performance of a
new JIT prediction technique is heavily biased by the chosen SZZ variant. Com-
paring studies that use different SZZ variants without acknowledging this effect
can lead to flawed conclusions.

5 Threats to Validity

VCC retrieval accuracy represents a key threat, stemming from inherent SZZ
limitations rather than implementation issues. We mitigated this by selecting
diverse SZZ variants, including both general-purpose (B-SZZ) and vulnerability-
specific techniques (V-SZZ). This study evaluates SZZ’s impact on model per-
formance without validating absolute VCC correctness against manual ground
truth; effectiveness is judged solely by downstream ML model performance.

Our ML pipeline introduces potential confounding factors. The 1% negative
sampling ratio, while based on prior work [19], and SMOTE balancing, despite
known weaknesses [12], could affect results. We mitigated these threats by ap-
plying consistent preprocessing across all experiments.

Our focus on open-source Java projects limits the external validity of our
findings. While Java was chosen as the most studied language in SZZ research,
results may not generalize to other languages or industrial settings with different
development dynamics.
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6 Conclusion and Future Work

Our findings reveal that differences in SZZ variant VCC identification lead to
statistically significant variations in model performance. While variants share
core VCCs (RQ1), ground truth divergences affect just-in-time vulnerability
prediction (RQ2), particularly in data-sensitive models. B-SZZ, V-SZZ, MA-
SZZ, and VCC-SZZ produce more stable models with median MCC scores often
exceeding 0.50, while L-SZZ and R-SZZ yield weaker outcomes near 0.0. The
impact varies by algorithm: decision trees and boosting models amplify labeling
differences, while KNN shows less sensitivity but worse overall performance.

Practitioners should interpret these results cautiously, as model reliability
remains tied to the unverified accuracy of SZZ ground truth labeling. Future work
should investigate generalization beyond Java projects, integrate deep learning
models with richer feature sets, and explore hybrid VCC retrieval techniques
beyond SZZ heuristics.
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