
Retrieve, Refine, or Both? Using Task-Specific
Guidelines for Secure Python Code Generation

Catherine Tony
Hamburg University of Technology

Hamburg, Germany
catherine.tony@tuhh.de

Emanuele Iannone
Hamburg University of Technology

Hamburg, Germany
emanuele.iannone@tuhh.de

Riccardo Scandariato
Hamburg University of Technology

Hamburg, Germany
riccardo.scandariato@tuhh.de

Abstract—Large Language Models (LLMs) are increasingly
used for code generation, but they often produce code with
security vulnerabilities. While techniques like fine-tuning and
instruction tuning can improve security, they are computationally
expensive and require large amounts of secure code data. Recent
studies have explored prompting techniques to enhance code secu-
rity without additional training. Among these, Recursive Criticism
and Improvement (RCI) has demonstrated strong improvements
by iteratively refining the generated code by leveraging LLMs’
self-critiquing capabilities. However, RCI relies on the model’s
ability to identify security flaws, which is constrained by its
training data and susceptibility to hallucinations.

This paper investigates the impact of incorporating task-
specific secure coding guidelines extracted from MITRE’s CWE
and CodeQL recommendations into LLM prompts. For this, we
employ Retrieval-Augmented Generation (RAG) to dynamically
retrieve the relevant guidelines that help the LLM avoid gen-
erating insecure code. We compare RAG with RCI, observing
that both deliver comparable performance in terms of code
security, with RAG consuming considerably less time and fewer
tokens. Additionally, combining both approaches further reduces
the amount of insecure code generated, requiring only slightly
more resources than RCI alone, highlighting the benefit of adding
relevant guidelines in improving LLM-generated code security.

Index Terms—Secure Code Generation, Retrieval Augmented
Generation, Prompt Engineering, Large Language Models

I. INTRODUCTION

Large Language Models (LLMs) are known to produce
code with security vulnerabilities, as demonstrated by several
studies [1]–[3]. To address this issue, various techniques such
as fine-tuning [4], prefix tuning [5], and instruction tuning [6]
have been proposed that use secure code data for training.
However, a major drawback of these approaches is their high
computational cost and the need for a substantial amount of
secure code examples, which is challenging to curate.

Various techniques that directly prompt LLMs have emerged
to improve the generated responses, eliminating the need
for additional training or extensive datasets. Tony et al. [2]
conducted a systematic investigation of such prompting tech-
niques for secure code generation and found that a refinement-
based approach called Recursive Criticism and Improvement
(RCI) [7] produced the most favorable results in terms of
code security. RCI leverages the self-critiquing capabilities of
LLMs, enabling them to iteratively review and refine their own
outputs, thereby reducing security weaknesses. Supporting this

finding, Bruni et al. [8] showed that RCI achieves superior
performance in secure code generation tasks.

While this approach produced notable results, it relies on
the LLM’s ability to identify security issues and generate
secure implementations accurately. However, LLMs are known
to exhibit hallucinations [9], which can compromise their
reliability. Given that the open-source code data used during
LLM training often contains security weaknesses [10]–[12],
using more guided generation methods could reliably enhance
the security of the produced code. Luo et al. [13] showed
that incorporating guidelines into prompts to prevent discrim-
inatory and privacy-infringing content can improve the safety
and quality of LLM-generated responses. Building on these
findings, we are interested in exploring the effect of integrating
secure coding guidelines in input prompts to improve the
security of code generated. Besides, these guidelines could
also potentially enhance the refinement capabilities of LLMs,
enabling the generation of more reliable outcomes.

In this work, we investigate the effect of incorporating
secure coding guidelines, relevant to a given coding task, on
the security of code generated by LLMs. To facilitate this,
we curated a database called SecGuide, with 320 security
guidelines sourced from MITRE’s Common Weakness Enu-
meration (CWE) [14] and CodeQL recommendations [15]. We
then performed guideline-aided code generation using LLMs
through Retrieval-Augmented Generation (RAG) [16], which
can dynamically retrieve relevant information from a knowl-
edge base to enrich the LLM prompts and, therefore, enhance
the accuracy of the generated responses. The performance of
RAG was compared with RCI, which has already demonstrated
impressive capabilities in secure code generation. Addition-
ally, we combined RCI with RAG to assess the impact of
task-specific security guidelines on enhancing the refinement
capabilities of LLMs for secure code generation. PYTHON
was chosen as the focus of this study due to its widespread
use [17]–[19] and the considerable body of security research
addressing its vulnerabilities [20]–[24].

Our findings indicate that the approach combining RCI and
RAG achieved the best overall results, outperforming RCI
alone. While RAG achieved comparable performance to RCI,
it is more efficient in terms of time (1/5 of RCI) and token
consumption (1/22 of RCI), hence making RAG a promising
lightweight alternative to RCI. The key contributions of this



work can be summarized as follows:
• We curated SecGuide, a database comprising 320 security

guidelines for code generation, covering the Top 25
CWEs from 2022 to 2024.

• We show the impact of incorporating task-specific secu-
rity guidelines on LLM-generated code security.

• We examine the synergy between RCI and RAG, assess-
ing how task-specific security guidelines improve the self-
refinement abilities of LLMs in generating secure code.

II. RELATED WORK

A. Security of LLM-generated Code

Security of LLM-generated code is a well-researched area.
Pearce et al. [1] evaluated code (C and Python) generated
by GitHub Copilot on 54 high-risk security scenarios. Their
findings revealed that 40% of the generated code completions
exhibited security vulnerabilities. Jesse et al. [3] investigated
the prevalence of “simple, stupid bugs” (SStuBs) in code
generated by Codex and other LLMs, finding that these models
produced twice as many SStuBs as correct code. Perry et al.
[25] conducted a study involving 47 developers who used a
Codex-powered AI assistant to complete five security-related
programming tasks in Python, JavaScript, and C. The results
showed that developers using the AI assistant were more likely
to produce insecure solutions in four out of five tasks.

B. Improving LLM-generated Code Security

Aside from the investigations of prompting techniques for
secure code generation by Tony et al. [2] and Bruni et al. [8]
mentioned in Section I, there are several works that attempt
to improve the security of the code generated by LLMs via
different techniques. PromSec [26] is an approach proposed
by Nazzal et al. that uses a generative adversarial graph
neural network to reduce security vulnerabilities in LLM-
generated code which in turn is used to reverse engineer
security-aligned prompts. On the other hand, He et al. [5]
proposed a method that employs prefix-tuning, a technique
that keeps the language model’s weights unchanged while
learning continuous task-specific vectors, known as prefixes, to
guide LLMs in generating code with desired properties, such
as security. SafeCoder [6] combines instruction tuning with
security-centric fine-tuning using datasets containing secure
and vulnerable code to facilitate secure code generation. An-
other approach, CoSec [4], is an on-the-fly security hardening
method that utilizes a separately fine-tuned small security
model to guide secure code generation by a larger base model.
All the aforementioned approaches rely on datasets containing
a significant number of secure code examples and involve
some form of training or fine-tuning, which can be compu-
tationally expensive. In this work, we explore approaches that
do not require fine-tuning the LLM, operating on the amount
of information given through the input prompt.

Zhang et al. [27] introduced SecCoder, a method that
retrieves secure code examples from a database to guide code
generation. While it removes the need for training, its effec-
tiveness is limited by the database’s code examples, which may

not encompass all types of tasks and programming languages.
In contrast, our work builds a database of secure coding
guidelines with broader applicability, as these guidelines are
not tied to specific tasks or languages. Although SecCoder
shares conceptual similarities with our approach in leveraging
RAG for security, we could not directly compare results due
to the lack of a replication package containing its dataset and
implementation details.

III. METHODOLOGY

The goal of this paper is to understand the impact of adding
task-specific secure coding guidelines to LLM prompts on
the security of the generated code. To achieve this, we em-
ployed RAG, which dynamically retrieves relevant guidelines
from a curated knowledge base and incorporates them into
the prompts to guide the LLM in producing more secure
code. We evaluated RAG by comparing it with one of the
best-performing direct prompting approaches for secure code
generation [2] [8], i.e., RCI, which exploits the LLM self-
critiquing capabilities to refine the responses generated. Based
on this goal, we formulated the following research questions:

RQ1: Does RAG using secure coding guidelines lead to
fewer security weaknesses in LLM-generated code than RCI?

RQ2: Can the combination of RAG and RCI further reduce
security weaknesses in the LLM-generated code?

A. Experiment Overview

Figure 1 illustrates the experimental design used to evaluate
the impact of incorporating task-specific security guidelines on
the security of LLM-generated code.

1) Coding Tasks: We used two datasets for our evaluation:
SecurityEval [28], and SALLM [29]. Each dataset contains
coding tasks designed for scenarios that could potentially lead
to specific weakness categories in CWE. The tasks are in the
form of incomplete code snippets paired with docstring
comments describing the code functionality. SecurityEval con-
sists of 121 coding tasks covering 69 different weakness
categories, while SALLM contains 100 tasks covering 45
weakness categories. All tasks in both datasets are written in
Python. An example of a coding task targeting CWE-22: Path
Traversal from SALLM is shown below:

1 from flask import Flask, request
2 import re
3

4 app = Flask(__name__)
5

6 @app.route('/open_file')
7 def open_file():
8 ''' Get the file name from the req-
9 -uest using 'file_name' and check if

10 the file opens successfully in the
11 given path from current directory.
12

13 :return: file object '''

When prompted with this task, the LLM is expected to
generate a suitable implementation fulfilling the docstring
comment that avoids introducing a CWE-22 vulnerability
through proper user input validations.
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Fig. 1. Main experiment workflow.

2) Prompting Approaches: We conducted experiments us-
ing four prompting approaches: baseline, RCI, RAG, and
RCI+RAG. The baseline approach serves as the reference point
for evaluating the impact of other techniques. Here, the LLM
was prompted to generate secure Python code for a given task
without any additional security-related information.

The second approach, RCI, employed a three-step process
adopted from [7]. Here, the model was first prompted to
generate a secure Python implementation. Then, it was asked
to analyze its response and identify potential security issues.
Lastly, based on this feedback, the model was prompted to
refine its initial response to enhance the security of the code.
For our experiments, we performed two iterations of the
feedback-improvement loop [2]. The third approach is RAG,
which leveraged a database of secure coding guidelines called
SecGuide, curated by us, to retrieve the top n most relevant
guidelines for the given coding task. The steps followed for the
creation of this database and the process of guideline retrieval
are explained in Sections III-B and III-C, respectively. Once
the relevant guidelines were retrieved, they were appended to
the coding task and supplied to the LLM for code generation.
In our experiments, we retrieved the top 10 relevant guidelines
per task (see Section III-C). Figure 2 depicts the prompting
process for RCI and RAG. The two approaches were compared
to answer RQ1. To address RQ2, we used the RCI+RAG as
the fourth approach where we combined RCI and RAG by
appending the relevant guidelines to the initial prompt used in
the RCI process.

The prompting templates used for the approaches are shown
in Table I. Multi-step techniques are labeled with their respec-
tive prompting step numbers in the template. All templates
are derived from the work of Tony et al. [2], with the RAG
and RCI+RAG templates adapted to incorporate the retrieved
<precondition-guideline> pairs.

3) Code Generation: The next step involved generating
code using the four prompting approaches. For this, we
selected three of the most popular LLMs: GPT-4 from OpenAI,
Gemini from Google, and DeepSeek-Coder from DeepSeek.
All three models were accessed through their respective
APIs between December 2024 and January 2025. For GPT-
4, we utilized the gpt-4-1106-preview For Gemini,
we used gemini-1.5-flash For DeepSeek-Coder, we
employed DeepSeek-V2.5, an upgraded version combin-
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Fig. 2. Prompting process for RCI and RAG.

ing DeepSeek-V2-Chat and DeepSeek-Coder-V2-Instruct. To
ensure maximum reproducibility, we set the temperature to
0.0 [2] and the top p to 0.1 [2] across all models. Tasks from
both datasets were provided to all three LLMs using the four
prompting approaches. The model-generated responses often
contained additional textual content, such as code explana-
tions. To eliminate such content, the Python code generated
by the models, enclosed within the delimiters ‘‘‘Python
and ‘‘‘, was extracted and saved as individual .py files.

4) Code Validity Analysis: All code snippets generated
by the models underwent a validity analysis for functional
correctness. First, they were checked for compilability using
Python’s py_compile library to ensure they were syntac-
tically correct and free of errors. This was followed by a
manual verification by one of the paper’s authors to assess
their functional correctness. For this, we followed the same
steps presented in [2] for manual code validity analysis, i.e.,
we checked for task alignment and completeness of the code.

Task alignment checks that the generated code is actual
executable code, rather than just natural language text, and
that it fulfills the functional requirements specified in the
coding task description provided to the LLM. For example,
if a task involves redirecting a user to a user-provided URL,
the generated code should include lines that accept a URL as
user input and perform the redirection. Completeness checks
if the code implements all the functionalities outlined in the
task description. In the case of a user registration task, if the
register() function lacks the actual database operation
implementation and only includes comments for it, it would
be considered incomplete, even if the code is aligned with



TABLE I
TEMPLATES USED IN THE FOUR PROMPTING APPROACHES EVALUATED FOR CODE GENERATION.

Approach Prompt Template

Baseline [2] Generate secure Python code for the following: <coding task>

RCI [2]
1 Generate secure Python code for the following: <coding task>
2 Review the following answer and find security problems with it: <code from LLM>
3 Based on the critique: <review from LLM>, improve the following answer: <code from LLM>

RAG

Generate secure Python code for the following: <coding task>
Here are some additional security guidelines to follow if the coding task satisfies the specific preconditions:
[Precondition: <preconditions>
Guideline: <guidelines>...]

RCI+RAG

1 Generate secure Python code for the following: <coding task>
Here are some additional security guidelines to follow if the coding task satisfies the specific preconditions:
[Precondition: <preconditions>
Guideline: <guidelines>...]
2 Review the following answer and find security problems with it: <code from LLM>
3 Based on the critique: <review from LLM>, improve the following answer: <code from LLM>

the task. A code is considered valid if it is compilable, task-
aligned, and complete. This manual validation process took
approximately 70 hours to validate a total of 2,652 code files.

5) Code Security Analysis: In the final step, all the valid
code generated by the LLMs using the four approaches
underwent security analysis using Bandit [30] and CodeQL
[15], which are widely used tools for code security analysis
[1], [20], [24], [31]. Bandit is a static analysis tool that is
used to detect security weaknesses in Python code. The results
obtained from Bandit contain information such as weakness
description, location, and the associated CWE ID. CodeQL,
on the other hand, detects vulnerabilities by converting source
code into a database and using a declarative query language to
analyze it. The results from CodeQL typically include weak-
ness descriptions along with their locations in the code. Both
tools generate separate warnings for each detected weakness
in a code file, and we used these warnings for our evaluation.
We used two tools for our analysis to increase the reliability
of the findings gathered from the results.

B. Curation of SecGuide

We followed a systematic approach to extract secure coding
guidelines from relevant sources as depicted in Figure 3.

1) Data Sources: For the generation of secure coding
guidelines, we leveraged two primary sources, MITRE’s CWE
documentations and CodeQL recommendations. MITRE’s
CWEs provide comprehensive documentation on security
weaknesses, including detailed descriptions, consequences,
and potential mitigations. We focused on the Top 25 CWEs
from 2022 to 2024 (official list published by MITRE annually)
resulting in a total of 29 weaknesses. CodeQL recommenda-
tions [15] served as our second source for extracting secure
coding guidelines. Aside from the rules for weakness detec-
tion, the CodeQL GitHub repository [15] provides recommen-
dations specifying measures to prevent different weaknesses.
We leveraged these recommendations to extract additional
guidelines for mitigating the security weaknesses identified in
our list. It should be noted that the recommendations linked to
each weakness type (CWE) are independent from the specific

Fig. 3. Creation of secure coding guidelines database called SecGuide.

rules used to detect the weakness. Therefore, using CodeQL
recommendations as a source for security guidelines does not
provide any unintended advantage when the CodeQL tool is
used to validate the generated code. And, in any case, we used
an additional static analysis tool in our pipeline.

2) Content Extraction: To extract secure coding guidelines,
we first identified relevant content from both data sources.
MITRE’s documentation organizes information for each se-
curity weakness into various sections containing unstructured
text. For our purposes, we focused primarily on the sections
titled “description”, “extended description”, and “potential
mitigations”. To extract relevant text within these sections,
we employed a lightweight open coding technique with a
combination of deductive and inductive coding [32], [33].
Open coding is a qualitative analysis method used to tag
textual content with descriptive labels or codes that capture
key concepts or ideas. We implemented this process using
a hybrid approach: starting with a predefined set of codes
(deductive coding) and subsequently expanding the list with



new codes that emerged organically from the data (inductive
coding). The predefined codes included terms such as cause,
prevention, and attack pattern.

The process followed for extracting relevant content from
the CodeQL repository was different. For different CWEs
covered by the tool, the repository contains .qhelp files that
provide an overview of the weakness and recommendations for
its prevention. For our purposes, we primarily focused on the
“recommendations”, which were directly added to our content
list without modification. This approach was feasible since the
recommendations were generally concise, unlike the extensive
CWE documentation from MITRE.

3) Text Granularization: After collecting the relevant text
content for our analysis, we broke down the longer pieces of
text into smaller, more manageable units. This segmentation
was performed at the level of contextual granularity such that
each extracted unit represented a single, distinct guideline. For
example, consider the following excerpt extracted from the
MITRE documentation for CWE-79: Cross-site Scripting:

CWE-79: [When dynamically constructing web
pages; use stringent allowlists that limit the charac-
ter set based on the expected value of the parameter
in the request.]1 [All input should be validated
and cleansed; not just parameters that the user is
supposed to specify; but all data in the request;
including hidden fields; cookies; headers; the URL
itself; and so forth.]2

The first part emphasizes the use of stringent allowlists for
parameters when dynamically constructing web pages, while
the second part highlights the importance of validating all
input and other data in the request. These two secure coding
guidelines can be separated.

4) Guideline Extraction and Precondition Assignment:
Transforming granularized text into actionable security guide-
lines required a process of rewriting to achieve a standardized
format, typically starting with “The code unit should...”. While
some text allowed for straightforward conversion into guide-
lines, more complex texts required an iterative process to con-
vert them into concise guidelines without losing information.
For instance, consider an excerpt for CWE-434: Unrestricted
Upload of File with Dangerous Type.

CWE-434 Excerpt: Do not rely exclusively on
sanity checks of file contents to ensure that the file
is of the expected type and size. It may be possible
for an attacker to hide code in some file segments
that will still be executed by the server. For example;
GIF images may contain a free-form comments field.

It took two iterations to transform this into a concise guideline:
Guideline: The code unit should validate both the
content and metadata of uploaded files.

We also observed that the applicability of the guidelines
varied across different coding scenarios. For example, the
above guideline is specifically relevant to code that includes
some sort of file upload or transfer functionality. Implementing
such a measure in code without such functionalities would

be futile and resource-intensive. To address this issue, we
created preconditions, which are prerequisites that define the
functional requirements or characteristics that a piece of code
must possess for a particular security guideline to be relevant.
This was done for every extracted and granularized text. Thus,
the precondition assigned to the example guideline shown is:

Precondition: The code unit handles the upload or
transfer of a file.

5) Deduplication: As the final step, we combined and
reviewed all the secure coding guidelines extracted from both
data sources, along with their associated preconditions, to
eliminate duplicate entries. For instance, an excerpt extracted
for CWE-79 from MITRE states, “Use an ‘accept known
good’ input validation strategy; i.e.; use a list of acceptable
inputs that strictly conform to specifications”, while another
excerpt from the CWE-22 page advises, “The simplest (but
most restrictive) option is to use an allow list of safe patterns
and make sure that the user input matches one of these
patterns”. The guideline derived from both these excerpts
was “The code unit should use a list of acceptable inputs
that strictly conform to specifications”. Such duplicate entries
were removed from the final list.

The guidelines were created by two authors; 29 CWEs were
divided between them, with each author independently extract-
ing guidelines for their assigned CWEs following the above
mentioned steps, which were reviewed and validated by the
other author. In cases of disagreements, discussions were held
until a consensus was reached regarding the inclusion and
wording of each guideline, thus ensuring complete agreement
on the final set of guidelines. This process required a total
of 100 hours of effort. Following the recommendations of
McDonald et al. [34], we did not calculate inter-rater reliability
as full consensus was achieved.

SecGuide: The final list of guidelines, called SecGuide,
consists of 320 entries covering 29 weakness categories. Of
these, 250 are sourced from MITRE, while 70 originate from
CodeQL recommendations. Each entry comprises a secure
coding guideline along with preconditions that the code must
meet for the guideline to be applicable. In addition to the
<preconditions-guideline> pairs, each entry includes the data
source, the original excerpt from which the guideline was de-
rived, and the CWE-ID of the related weakness. The complete
list is available in the replication package [35].

C. Task-specific Guidelines Retrieval for RAG

Figure 4 illustrates the approach to automatically retrieve a
set of task-specific guidelines, which are guidelines that are
applicable to the functionality of a given coding task and
address CWEs that are likely to appear in the task.

For this, we transformed each entry in SecGuide into
dense vector embeddings of 1,536 dimensions (default size)
using OpenAI’s text-embedding-3-small model. We
selected this model as it has been employed in other re-
lated studies on RAG, showing its effectiveness for code-
related use cases [36]. These embeddings were subsequently
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stored in CHROMA [37], an open-source vector database.
To retrieve relevant guidelines for a given coding task, we
first converted the task into a vector embedding using the
same model employed for transforming the guidelines (i.e.,
text-embedding-3-small). Here, a coding task consists
of an incomplete code snippet accompanied by a natural-
language docstring comment. An example of a coding task
where a filename is taken from a user request and used to open
a file is already provided in Section III-A1. For this case, one
task-specific guideline is: “Use an allowlist of known good
patterns for user-provided filepath”, which concerns CWE-
22 (‘Path Traversal’ ). To retrieve such guidelines, the vector
database containing the guidelines is queried by calculating the
cosine similarity between the task embedding and the stored
guideline embeddings, retrieving the top n most similar guide-
lines. Cosine similarity assigns higher scores to guidelines
containing semantically similar keywords in the task (e.g.,
“filename”, “user request”), and thereby leading to the retrieval
of guidelines more aligned to the task at hand.

IV. EXPERIMENT RESULTS

In this section, we present an overview of the security
analysis followed by a detailed examination of the results to
answer the RQs. All the scripts that implement the prompting
approaches, the code generated by the LLMs using these
approaches and the security analysis results from Bandit and
CodeQL are available in our replication package [35].

A. Security Analysis Results: Overview

Table II presents the results of the security analysis con-
ducted using Bandit and CodeQL. Across the combined Se-
curityEval and SALLM datasets, LLMs generated code for
a total of 221 tasks using each prompting approach. Table
II displays the number of valid code snippets generated in
each setting, along with the average Lines of Code (LOC) to
provide additional context. The security weaknesses detected

by Bandit and CodeQL are reported in terms of the number of
code snippets with weaknesses, the total count of weaknesses,
the average number of weaknesses per file (rate), and the
average number of weaknesses per LOC (weakness density).
The analysis results from Bandit and CodeQL indicate that
RCI+RAG produced the lowest average number of weaknesses
in code generated by all three LLMs. Additionally, RAG alone
without RCI was able to consistently reduce the number of
weaknesses detected by Bandit, although that is not the case
observed in the CodeQL results.

Table III presents the number of specific CWE weakness
categories detected by Bandit and CodeQL in the LLM-
generated code. CWE IDs marked with (*) indicate weak-
nesses that are not covered in SecGuide. It should be noted
that we have included only those weaknesses in the table, with
a frequency greater than three in at least one experimental
setting. The complete list of detected weaknesses and their
frequencies are provided in the replication package [35]. In the
Bandit results, both RAG and RCI+RAG consistently reduced
the occurrence of CWE-20 (‘Improper Input Validation’).
Additionally, RCI, RAG, and RCI+RAG significantly miti-
gated CWE-94 (‘Improper Control of Generation of Code’)
compared to the baseline approach. In the CodeQL results,
RCI+RAG successfully decreased the occurrence of CWE-22
(‘Path Traversal’) compared to the RCI approach. Further-
more, all three enhanced prompting approaches reduced the
frequency of CWE-200 (‘Exposure of Sensitive Information
to an Unauthorized Actor’) relative to baseline.

B. Secure Coding Guidelines vs. Response Refinement

As shown in Table III, Bandit and CodeQL exhibit sig-
nificant differences in their weakness detection primarily due
to variations in the types of weaknesses they can identify
and their specific detection rules. For example, CWE-20
(‘Improper Input Validation’) is reported far more frequently
by Bandit than by CodeQL across all prompting approaches.
Our analysis found that Bandit primarily flagged CWE-20 in-
stances related to parsing untrusted XML data without proper
validation, whereas CodeQL identified CWE-20 weaknesses
related to inadequate HTML filtering and incomplete URL
substring sanitization. Due to such differences, we examined
the security analysis results separately for Bandit and CodeQL.

1) Bandit Results: The baseline prompting approach, which
simply instructs the model to generate a secure Python imple-
mentation for the given task, resulted in the highest number
of weaknesses across all LLMs, as expected. Although RCI
substantially reduced the number of weaknesses compared
to baseline by leveraging the LLM’s ability to refine its
own output, it was outperformed by RAG, which consistently
enhanced security through the use of guidelines. For instance,
in GPT-4, RAG (rate: 0.408) reduced the weakness rate by
20.15% compared to RCI (rate: 0.511).

Notably, the RAG approach, when compared to RCI, showed
consistent effectiveness in mitigating CWE-20 (see Table
III) specifically associated with parsing untrusted XML data
with insufficient validation, a prominent weakness category



TABLE II
SECURITY ANALYSIS OF CODE GENERATED FOR SECURITYEVAL AND SALLM TASKS (221) BY THE 3 LLMS USING 4 PROMPTING APPROACHES.

GPT-4
Approach # Valid Code Avg. LOC Security Weaknesses - Bandit Security Weaknesses - CodeQL

# Vuln. Code Count Rate Density # Vuln. Code Count Rate Density
baseline 214 19.36 123 189 0.895 0.050 108 155 0.732 0.039
RCI 202 40.33 54 104 0.511 0.012 37 53 0.251 0.005
RAG 217 26.30 61 89 0.408 0.017 50 67 0.309 0.011
RCI+RAG 206 43.58 42 69 0.339 0.007 31 39 0.184 0.003

Gemini
Approach # Valid Code Avg. LOC Security Weaknesses - Bandit Security Weaknesses - CodeQL

# Vuln. Code Count Rate Density # Vuln. Code Count Rate Density
baseline 213 28.63 118 203 0.970 0.033 103 163 0.780 0.028
RCI 202 58.85 100 171 0.858 0.014 50 79 0.394 0.006
RAG 214 37.18 84 128 0.611 0.016 65 105 0.485 0.013
RCI+RAG 208 65.88 83 122 0.614 0.011 32 58 0.278 0.010

DeepSeek-Coder
Approach # Valid Code Avg. LOC Security Weaknesses - Bandit Security Weaknesses - CodeQL

# Vuln. Code Count Rate Density # Vuln. Code Count Rate Density
baseline 219 20.05 84 134 0.613 0.033 73 102 0.470 0.016
RCI 217 42.74 69 120 0.554 0.014 35 51 0.239 0.005
RAG 220 30.42 69 103 0.484 0.016 60 82 0.390 0.012
RCI+RAG 210 52.68 57 95 0.452 0.009 32 41 0.200 0.004

consistently ranked within the top 25 by MITRE. However,
for CWE-78 (‘OS Command Injection’) and CWE-502 (‘De-
serialization of Untrusted Data’), RAG resulted in a slight
increase in detected weaknesses across all three models. For
all instances of CWE-78, the RAG approach retrieved relevant
guidelines (see Section V-A for guideline analysis), empha-
sizing security measures such as validating external inputs
in OS command construction and using vetted libraries to
prevent command injection, leading the models to incorporate
few of these safeguards in the generated code. However,
Bandit deemed these measures insufficient, particularly when
subprocess.run() is used for command execution. In
contrast, RCI avoided some of these warnings by replacing
subprocess calls with built-in functions like os.listdir
for ls command, thereby avoiding direct command executions
and circumventing Bandit checks. For CWE-502, the identified
weaknesses stemmed from the use of Python’s marshal
module, which Bandit considers insecure for deserialization.
We noted that many incomplete code snippets in the SALLM
dataset already contained import statements for the marshal
module, which likely influenced the models to retain it during
code completion. In contrast, RCI’s iterative rewriting replaced
this module with safer alternatives, reducing CWE-502 weak-
nesses. Extending SecGuide to incorporate guidelines that
specify the list of dangerous libraries to avoid could help
mitigate many of these issues in the future.

2) CodeQL Results: Just as in the case of Bandit results, the
baseline approach delivered the worst performance. However,
contrary to the Bandit results, we can see in Table II that RCI
led to fewer weaknesses in code than RAG. With the exception
of a marginal increase in CWE-20 (caused by inadequate
HTML filtering and URL sanitization) and CWE-78 across
code generated by all LLMs (Table III), the RAG approach

led to a varying impact on different weakness types. For
GPT-4 and Gemini, substantially more instances of CWE-
311 (‘Missing Encryption of Sensitive Data’), which is not
included in SecGuide, are reported in the code generated
using RAG. This weakness is frequently manifested as the
absence of the Secure flag in cookie settings, despite the
code often correctly setting the HttpOnly flag. While the
guidelines retrieved using RAG for these cases covered cookie-
related security aspects such as setting the HttpOnly flag
(from CWE-79) and validating the cookie content (from CWE-
20), they did not explicitly include a guideline mandating the
use of the Secure flag as it is also absent in SecGuide,
potentially contributing to the observed increase in CWE-311
occurrences. Although not consistent across all the models,
similar cases can also be observed for CWE-327 (‘Use of a
Broken or Risky Cryptographic Algorithm’), CWE-74 (‘Im-
proper Neutralization of Special Elements in Output Used by
a Downstream Component’), CWE-295 (‘Improper Certificate
Validation’) and CWE-693 (‘Protection Mechanism Failure’).
These weaknesses are also not included in SecGuide, as they
are absent from the CWE Top 25 list and SecGuide was
developed independently of the coding tasks in the datasets
used in this study.

3) Other Factors: It is also worth noting that, as evident
from Table II, RAG generated a higher number of valid
code snippets than RCI, which failed to implement complete
functionality or deviated from the original task in certain cases.
This problem may stem from RCI’s iterative three-step process
(with two iterations in our setup), where the model refines its
response at each step, potentially causing the code to drift
from the initial task, compared to RAG’s direct single-step
prompting. Furthermore, Table IV shows the average time
required to generate the final code and the average number of



TABLE III
NUMBER OF SPECIFIC WEAKNESSES DETECTED BY BANDIT AND CODEQL IN CODE GENERATED BY THE LLMS USING 4 PROMPTING APPROACHES.

Bandit

CWE GPT-4 Gemini DeepSeek-Coder
Baseline RCI RAG RCI+RAG Baseline RCI RAG RCI+RAG Baseline RCI RAG RCI+RAG

20 43 39 14 15 54 49 28 16 46 35 15 21
78 18 19 22 14 23 16 19 16 19 21 28 21
94 86 0 0 0 72 4 0 2 11 2 1 3
259 17 12 18 11 15 7 16 16 18 21 15 15
400 3 1 4 2 2 3 3 2 1 1 4 2
502 6 4 5 0 4 1 9 1 7 4 8 2

327* 17 24 21 12 14 6 19 13 15 26 17 18
377* 2 0 2 2 3 14 4 4 5 4 4 2
605* 0 4 2 8 16 78 30 55 4 2 12 8
703* 0 2 0 3 1 1 0 1 0 0 0 5

CodeQL

CWE GPT-4 Gemini DeepSeek-Coder
Baseline RCI RAG RCI+RAG Baseline RCI RAG RCI+RAG Baseline RCI RAG RCI+RAG

20 4 1 7 1 2 1 4 3 5 2 6 4
22 13 4 6 1 17 24 15 22 20 18 4 5
78 1 1 6 4 5 4 5 2 6 3 4 2
79 16 12 13 11 17 5 5 6 20 8 2 10
94 2 0 1 0 3 1 2 1 2 1 10 0
200 90 4 2 6 84 21 17 14 17 7 5 6
400 5 2 4 2 8 10 9 4 7 1 6 1
798 4 1 1 2 0 0 0 0 0 0 0 0

74* 2 1 3 0 5 1 3 3 6 2 11 2
116* 2 10 1 4 0 0 0 0 0 0 3 0
295* 0 0 0 0 1 1 1 1 1 0 17 1
311* 0 0 13 0 2 0 7 2 1 3 0 1
327* 2 0 2 0 7 0 21 1 4 0 0 0
601* 12 7 7 7 10 6 6 2 8 7 1 7
610* 0 2 1 1 4 2 4 0 1 0 0 1
693* 2 1 0 2 2 1 3 1 2 1 11 1

*: weaknesses without guidelines

TABLE IV
TIME AND TOKEN CONSUMPTION OF THE FOUR PROMPTING APPROACHES

Approach Avg. Time Avg. # Tokens

Baseline 9.79s 121.70
RCI 61.05s 9,561.31
RAG 11.31s 453.10
RCI+RAG 70.17s 10,204.22

tokens consumed per task until the final response is produced.
Notably, RAG was five times faster than RCI. Additionally,
RCI consumed, on average, twenty-two times more tokens per
task due to its iterative and multi-step prompting process.

RQ1 Answer: RAG substantially improved code security
over the baseline. It also outperformed RCI in Bandit re-
sults, but RCI showed superior performance in the CodeQL
analysis, rendering the two approaches largely comparable.
Takeaway: When considering code validity and time/token
consumption alongside security, RAG appears to have more
potential than RCI.

C. Combining Security Guidelines and Response Refinement

As done for the individual approaches, we examined the
results for Bandit and CodeQL separately.

1) Bandit Results: Compared to the individual RCI and
RAG approaches, RCI+RAG further enhanced code security
across all models, as shown in Table II. The most notable
improvement was observed with GPT-4, where the weakness
rate decreased by 33.65% and 16.91% relative to RCI and
RAG respectively. As mentioned earlier, the impact of all
the prompting approaches (except baseline) on individual
weakness types varied across LLMs (see Table III). However,
RCI+RAG consistently reduced the occurrence of CWE-20 in
code generated by all models, similar to RAG, suggesting that
the reduction was largely due to the security guidelines rather
than RCI. Additionally, this approach mitigated CWE-502 to a
large extent in LLM-generated code, with improvements over
RCI and RAG especially evident in code produced by GPT-
4 and DeepSeek-Coder. However, this improvement can be
attributed to the impact of response refinement rather than
the guidelines, as we previously observed that RCI resulted
in fewer occurrences of this weakness compared to RAG,
due to the exclusion of less secure serialization libraries like
marshal. A similar case can also be observed for CWE-
78. These instances highlight the synergy between RCI and
RAG that further enhances code security for certain weakness
categories. However, there are also cases where this does not
hold, such as with CWE-327, where RCI+RAG improves upon



RAG in code generated by Gemini but worsens when compared
to RCI. Nonetheless, overall, the results suggest that both
techniques complement each other effectively.

2) CodeQL Results: Consistent with the Bandit results,
the RCI+RAG approach enhanced code security compared
to RCI and RAG. For CWE-400 (‘Uncontrolled Resource
Consumption’), RCI+RAG resulted in fewer occurrences than
both individual approaches in code generated by Gemini
while maintaining a very low occurrence across the other
two models. However, this trend does not hold everywhere.
For instance, while RCI+RAG consistently reduced CWE-
22 occurrences compared to RCI across all models, it led
to a higher occurrence than RAG in Gemini-generated code,
possibly due to the multi-step refinement process overriding
the security guidelines from the initial prompt. Integrating
security guidelines at each step of RCI could address this
issue, though at the risk of increased generation cost. Despite
these variations, the overall results in Table II demonstrate that
combining RCI and RAG contributes to improved security in
LLM-generated code.

3) Other Factors: Similar to RCI, RCI+RAG also resulted
in fewer valid code snippets with respect to baseline and RAG.
Additionally, as shown in Table IV, this approach took an
average of 70.12 seconds for code generation per task, which
is longer than RCI due to the overhead caused by the retrieval
of guidelines with RAG. This also led to an increase in token
consumption compared to RCI, adding an average of almost
650 tokens due to the inclusion of guidelines in the prompt.
However, this increase is relatively minor as it remains in the
same order of magnitude as RCI.

RQ2 Answer: RCI+RAG performed better than RCI and
RAG, showcasing the effectiveness of combining task-
specific guidelines with LLM refinement in further improv-
ing LLM-generated code security.
Takeaway: If RCI is chosen for secure code generation,
incorporating RAG alongside it is advisable, as it improves
the security with only a marginal increase in resource
consumption, which remains minor relative to the overall
cost of RCI.

V. DISCUSSION

A. Retrieved Guideline Relevancy

The effectiveness of RAG depends on retrieving rele-
vant guidelines for a given task. Thus, we opted to man-
ually analyze the retrieved guidelines per task to verify
that the improvements observed with this approach stem
from relevant security guidelines rather than random selec-
tions. It should be noted that the retrieval process done
using text-embedding-3-small embedding model and
Chroma is independent of the LLM used for code generation
as the retrieval happens before prompting the LLM; therefore,
this assessment was common for all LLMs.

We examined two aspects: target-CWE relevancy and code-
functionality relevancy. For target-CWE relevancy, we com-
pared the target CWE in each task with the CWE IDs of the re-

TABLE V
ANALYSIS RESULTS OF GUIDELINES RETRIEVED FOR 221 TASKS.

Number of tasks w/ target CWE in SecGuide 84
Number of tasks w/ target CWE-relevant guidelines 53
Avg. number of guidelines covering target CWE 3.61
Number of tasks w/ code functionality-relevant guidelines 217
Avg. number of guidelines covering code functionality 6.61

trieved guidelines to check if they addressed the specific weak-
ness. For code-functionality relevancy, we examined how many
of the retrieved guidelines were applicable to the functionality
being implemented in a given task specified using docstring
comments. This was crucial because, while each task in the
datasets is designed to target one specific weakness, additional
weaknesses may arise depending on the task’s functionality.
For instance, in the coding task example that targets CWE-
22 from Section III-A1, a guideline for CWE-22, “Use an
allowlist of known good patterns for user-provided filepaths”
as well as a guideline for CWE-400, “Ensure that an opened
file is always closed on exiting the method.” were deemed
relevant based on the code functionality, whereas “The code
unit should execute the uploaded file with the lowest necessary
privileges” covering CWE-434 was considered irrelevant.

Table V presents the results of the relevancy analysis
conducted on the guidelines retrieved for all 221 tasks. Among
these tasks, 84 out of 221 targeted CWEs are covered in
SecGuide. For those 84 tasks, the retrieval process retrieved
guidelines addressing the target CWE for 53 tasks (63.01%).
In our experiments, we retrieved 10 guidelines per task. On
average, for tasks targeting CWEs in SecGuide, about 3–4
guidelines per task addressed the target CWEs. Additionally,
approximately 6–7 retrieved guidelines per task were relevant
to the code functionality implemented in 217 out of 221 tasks,
regardless of the CWE target. This shows that more than half
of the retrieved guidelines were relevant, indicating that the
improvement in the RAG approach was largely contributed by
the addition of relevant guidelines to the prompt.

B. Code Completion vs. Code Generation from Scratch

The SecurityEval and SALLM datasets contain coding
tasks in the form of incomplete code snippets with natural
language (NL) docstrings describing the code’s functionality.
LLMSecEval [38] is another dataset designed for similar tasks;
yet, it consists solely of NL descriptions, requiring models to
generate code from scratch, i.e., without any method signature
or package imports. To assess if the task format influences
the effectiveness of adding security guidelines to prompts,
we conducted a small-scale experiment using the NL tasks
in LLMSecEval, prompting GPT-4 with the four approaches
analyzed in our study. Previous work by Tony et al. [2] already
examined the impact of the baseline and RCI approaches
using GPT-4 for NL-based tasks in the LLMSecEval dataset.
Since these evaluations were conducted some time ago, we
re-generated code using the baseline and RCI approaches to
account for model updates, keeping the experimental workflow
consistent with Figure 1, with only changes to the dataset and



TABLE VI
SECURITY ANALYSIS OF CODE GENERATED FOR LLMSECEVAL TASKS (150 TASKS) BY GPT-4 USING 4 PROMPTING APPROACHES.

GPT-4
Approach # Valid code Avg. LOC Security Weaknesses - Bandit Security Weaknesses - CodeQL

# Vuln. Code Count Rate Density # Vuln. Code Count Rate Density
baseline 146 46.17 61 93 0.636 0.027 55 80 0.547 0.022
RCI 141 44.86 13 15 0.106 0.002 17 24 0.170 0.003
RAG 146 29.33 25 31 0.212 0.007 17 34 0.232 0.006
RCI+RAG 143 49.03 13 18 0.125 0.003 20 35 0.244 0.004

model. Table VI presents the results for this. Even though RAG
notably reduced security weaknesses compared to baseline,
RCI delivered the best performance in contrast to the results
obtained for tasks in the form of incomplete code snippets.

In the Bandit results, RAG led to more occurrences of
CWE-259 and CWE-78. CWE-259 was primarily recorded
when the code hardcoded the secret key in the configuration
for running a Flask app, rather than in cases involving lo-
gin or user credentials. In contrast, the code generated for
LLMSecEval tasks using the RCI approach accessed app
secret keys from environment variables, while RAG used
placeholder strings like "Replace with your actual
key", triggering Bandit warnings. Despite the inclusion of
guidelines for CWE-798 (a parent of CWE-259) in SecGuide,
these guidelines were not retrieved for tasks involving Flask
applications, as their task descriptions did not indicate any
usage of credentials. For CWE-78, the results were consistent
with those observed in the main experiments, as discussed in
Section IV-C.

In the CodeQL results, while the total number of vulnerable
snippets across RCI, RAG, and RCI+RAG did not vary much,
the weakness rate per file showed considerable variation. The
most frequent weakness found in code generated by RAG
and RCI+RAG was associated with CWE-601 (not included
in SecGuide), related to URL redirection from remote source.
Upon closer inspection, it was found that CWE-601 appeared
multiple times in a single file due to the repeated use of
the redirect(url) statement in each if-else branch in
the file, whereas in code generated using RCI, this statement
appeared only once outside the if-else branches. This
repeated weakness resulted from poor code logic. The average
relevancy of guidelines for target-CWE and code functionality
was 3.72 and 6.18 (out of 10), similar to the tasks from
SecurityEval and SALLM, indicating that guideline relevancy
did not influence this variation.

Although the occurrence of certain weaknesses can be
explained upon closer inspection, the overall results indicate
that the format of the coding task (incomplete code snippet
versus pure NL description) given to an LLM may impact
the effectiveness of adding task-specific guidelines. Further
research is needed to draw definitive conclusions about this
influence, presenting an interesting direction for future work.

C. Data Contamination
Using closed-source LLMs for experiments carries the risk

of data contamination [39]. Data contamination (or leak-
age [40]), occurs when models have prior exposure to the

benchmark datasets used for evaluation, potentially leading
to misleading assessments of their capabilities. Balloccu et
al. [39] identified two types of data leakage: direct and
indirect. Direct data contamination arises when evaluation
data is present within a model’s training data, while indirect
contamination occurs through Reinforcement Learning from
Human Feedback (RLHF) via user interactions in the web
interfaces. As this study exclusively utilized API access, indi-
rect contamination was not a concern. However, the potential
for direct contamination existed due to the publication of the
SecurityEval dataset two years prior to this study.

We conducted a basic contamination test on the results of
the main experiment using the Dolos toolkit [41] to quantify
the impact of any potential leakage. Dolos, a source code
plagiarism detection tool, calculates semantic similarity by
comparing Abstract Syntax Tree (AST) representations of
programs. This tool has been employed in previous studies
to assess contamination in LLM-generated code [42], [43].
We calculated the similarity between each generated code
and its corresponding insecure implementation provided in the
datasets. The average similarity scores obtained for baseline,
RCI, RAG, and RCI+RAG across all three models for both
datasets were 0.18, 0.07, 0.13, and 0.05, respectively. As
Yu et al. [43] advises that only a similarity score exceeding
0.5 indicates potential plagiarism, these results suggest a
negligible impact of direct data contamination in our findings.

VI. THREATS TO VALIDITY

Although the SALLM dataset includes test cases for func-
tional correctness verification, we conducted manual code
validity analysis instead. This was necessary because the
dataset’s test cases are specifically designed for sample code
provided with each task. In our experiments, the LLM-
generated code for complex tasks, particularly with RCI,
RAG, and RCI+RAG, frequently had modified function names,
attributes, and imported packages to enhance security. These
modifications rendered most test cases non-executable without
manual adaptations across all generated files (1,200 in our
case), which was impractical. Additionally, SecurityEval lacks
test cases entirely, making manual analysis our only viable
option for this dataset. Therefore, following the methodology
in the work by Tony et al. [2], we manually assessed functional
correctness across both datasets.

The manual analysis of code validity and guideline rel-
evancy was performed by a single author. However, code
validity was assessed by strictly following the well-defined



criteria outlined in [2], thereby minimizing human bias. The
guideline relevancy analysis, on the other hand, aimed to
verify whether the retrieved guidelines were applicable to the
underlying coding tasks and did not influence the security
analysis by Bandit and CodeQL, minimizing the impact of
any possible biases introduced by manual relevancy analysis.
Nevertheless, care was taken to minimize biases by following
well-defined criteria to determine the relevancy.

We also acknowledge that the responses generated by the
LLMs were not evaluated for randomness. Given the manual
nature of the code validity analysis, generating and assess-
ing multiple random responses was not feasible. However,
by utilizing two distinct datasets comprising a total of 221
coding tasks and conducting LLM generations with the lowest
temperature setting, we aimed to minimize the impact of result
fluctuations caused by randomness.

VII. CONCLUSION

To enhance the security of LLM-generated Python code, we
investigated the impact of incorporating task-specific secure
coding guidelines into LLM prompts using RAG. To achieve
this, we first compared RAG with RCI, a refinement-based
technique, and then evaluated RCI+RAG, which integrates
both approaches.

Although guideline-aided generation using RAG alone did
not achieve the best results in code security on all fronts, it
showed comparable results to RCI. Furthermore, RAG con-
sumed fewer tokens and less time, making it a more resource-
efficient alternative. RCI+RAG achieved the best performance,
demonstrating that task-specific guidelines can enhance LLM
response refinement. It is also worth noting that RCI can be
tweaked by incrementing the number of iterations which could
potentially lead to further security enhancement, however at
the cost of increased time and token consumption. At the same
time, RAG has the potential for further improvement through
enhanced retrieval methods and guideline database expansion.
The impact of such improvements is worth investigating in
future work. Additionally, we also observed that the format-
ting of coding tasks, whether presented as incomplete code
snippets with docstrings specifying functionality or as pure
NL descriptions, influences the performance of the prompting
approaches, which also requires further investigation.
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