
The Phantom Menace:
Unmasking Security Issues in Evolving Software

Emanuele Iannone, Fabio Palomba
eiannone@unisa.it, fpalomba@unisa.it

Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy

Abstract—Software security concerns the creation of secure
software starting from its initial development phases, i.e., soft-
ware that can withstand malicious attacks. To this end, several
automated and not-automated solutions have been developed
that support developers in identifying and assessing security
issues, e.g., software vulnerabilities. However, most solutions were
not meant to cooperate synergically or continuously run in the
context of evolving software, i.e., software subject to frequent
maintenance and evolution activities. In this scenario, developers
have trouble setting up an effective defensive line against security
issues arising in their projects. This research fills this gap by
investigating how vulnerabilities affect evolving software projects
and by proposing novel solutions to improve and simplify the
security verification and validation process. The paper concludes
by presenting the open challenges in the field of software security
we framed while conducting our research.

Index Terms—Software Security, Automated Software Engi-
neering, Software Vulnerabilities.

I. CONTEXT

Software security is commonly defined as the idea of
“engineering software so that it continues to function correctly
under malicious attacks” [1]. It encompasses all the phases
of the software development lifecycle, from requirements to
testing, having the ultimate goal to produce software that
withstands attacks from malicious users, like denial of ser-
vice or data theft. The core idea is to build an inherently
secure design, adhering to the so-called “security-by-design”
principle [1]. Software security includes methods and tools to
detect and diagnose security issues—i.e., flaws in the design or
implementation that might expose the system to attacks—that
could arise in the developed system at any stage. For example,
the absence of a proper mechanism to validate and/or sanitize
externally-supplied data or the use of an outdated cryptog-
raphy algorithm to send confidential data over an insecure
channel [2], [3]. Most research efforts have been invested in
defining new tools and techniques that identify vulnerabilities
in source code or binaries. In this respect, there exists a wide
range of automated detection tools [4], [5]. Most rely on static
code analysis to spot recurring weak code patterns or detect
unusual data flows. Some notable examples are FORTIFY [6]
and FLAWFINDER [7]. Another relevant portion of analysis
tools leverages concrete executions of the system to identify
weird behavior hinting at the presence of vulnerabilities.
For instance, OWASP ZAP [8] stimulates the tested system
with specific inputs and interprets the response to understand
whether there might be a vulnerability. AMERICAN FUZZY

LOP [9] seeds the system with random inputs that are continu-
ously mutated to maximize the chance of detecting crashes and
buffer overflows. To a lesser extent, researchers have also been
searching for new ways to assess the risk associated with secu-
rity issues [10], [11]. Such solutions can either rely on experts’
judgment—e.g., through the Common Vulnerability Scoring
System (CVSS) [12]—or on fully-automated solutions, such
as ECLIPSE STEADY [10], [13]. What is more, over the last
decades, even the development processes have been updated
to address software security challenges. Microsoft defined the
so-called Security Development Lifecycle (SDL),1 a collection
of best practices and tools to introduce security and privacy
concerns since the first phases of software creation—a.k.a.
the “shift left” principle. Similar concepts can be observed
in the Building Security In Maturity Model (BSIMM),2 which
presents a large set of activities to put in action to address
security threats at various levels, starting from adopting new
governance mechanisms to managing configurations. What is
more, all these concepts have been recently integrated into the
tactics of DevOps, giving rise to DevSecOps, whose goal is to
foster a close collaboration among the development, security,
and operation teams [14].

Nevertheless, such methodologies and paradigms for secure
development (and operation) appear not to be extensively
adopted in practice [15], [16]. Indeed, developers find it
difficult to strictly adhere to all the recommended practices for
building secure software, mainly because they are deemed hard
to comprehend and time-consuming—sometimes not even
considered essential. What is more, the available automated
instruments for identifying and assessing security issues are
not designed to cooperate, i.e., they have overlapping capabil-
ities, and the output of one cannot be easily used as input for
another. In this respect, developers are forced to adopt ad-hoc
solutions for setting up an effective and automated defensive
line that contrasts security issues as soon as they emerge in
the codebase. These obstacles become particularly relevant in
the context of software that must evolve continuously and
rapidly to meet the users’ needs [17], causing an ever-growing
increment in both its size and complexity. In other words, as
more and more functionalities are added, the overall security
level becomes more challenging to control.

1 https://www.microsoft.com/en-us/securityengineering/sdl/practices
2 https://www.bsimm.com/framework.html

https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.bsimm.com/framework.html


II. PROBLEM & RESEARCH STATEMENTS

In this context, we believe that the existing solutions for
managing the rise of security issues need to be re-engineered
to make them work together synergically in development
contexts where changes are continuously committed. In other
words, we aim to provide actionable contributions to verifi-
cation and validation (V&V) of security issues affecting the
source code in the context of continuously-evolving software.
Hence, our research pursues this major goal:

◎ The Ultimate Goal. Envision an approach that
supports the combination of existing security V&V
solutions to maximize the chance of discovering a
vulnerability and minimize the time required to react
to them while upholding any project’s constraint.

The current research has made limited progress in reaching
this goal. Several studies have concluded that there is no
silver bullet: the best way to maximize the vulnerability
detection capabilities is to merge the results obtained by
existing solutions [18], [19]. Nevertheless, the indiscriminate
combination of multiple equivalent tools does not always lead
to good results, as observed by Nunes et al. [20]. Neither
machine learning can help solve this problem: using the tools’
outputs as features of prediction models does not provide good
enough results [21]. These preliminary findings strengthen the
need for a smarter approach that efficiently combines existing
solutions for improving the quality of the security verification
& validation activities. Such an approach should not simply
limit to running existing analysis tools and aggregating their
findings in a standard format, but should (1) select the most
suitable set of tools having the highest probability of finding
real vulnerabilities in a target project, (2) configure them
based on the project’s constraints, e.g., time budget, (3) run
them, and (4) harmonize the various outputs. We believe
this research is a further step toward the straightforward
creation of an automated defensive line against security threats
that (1) continuously monitors new changes in a project’s
repository, (2) decides the security analysis to run, and (3)
employs the best possible reacting actions in case of positive
discovery. Such an approach should also consider all the socio-
technical context of the project, e.g., the contribution flow,
the allotted budget for running the security verification &
validation pipeline, etc. To reach this goal, we need to conduct
preliminary investigations and experiment with novel solutions
for detecting and assessing software vulnerabilities. Only after
gaining a solid knowledge of the research gap in security
verification & validation can we focus on experimenting with
practical solutions that will lead us to reach our main goal.

The first and most important step is to gather additional
knowledge on how vulnerabilities appear in evolving software
systems, studying how they are introduced, managed, and
removed. We think this aspects is crucial for the success
of our research as the literature lacks of empirical studies
analyzing software vulnerabilities while taking into account

the projects’ histories—i.e., analyzing the flow of contributions
and code changes. Addressing these aspects would help us
discovering the challenges the developers face when dealing
with vulnerabilities. In particular, we aim to understand the
possible causes and circumstances in which developers commit
changes that contribute to the insertion of vulnerable code.
This sub-goal forms our first major research question:

Û RQ1. How do software vulnerabilities affect evolving
software projects?

Once obtained sufficient information on how vulnerabilities
appear as a consequence of maintenance and evolution activ-
ities, we can experiment with new solutions that accelerate
the detection and assessment of vulnerabilities. In particular,
we envision novel detection and assessment approaches that
can be run without delay after a new commit is made to a
project. We think that the first layer of the defensive line
should intercept vulnerabilities whenever they are being added
to the code, reducing at their minimum their lifetime.

Û RQ2.1. To what extent can we detect software vulnerabili-
ties when new changes are made into a project’s repository?

Û RQ2.2. To what extent can we assess software vulnerabil-
ities when new changes are made into a project’s repository?

While working on RQ2.1 and RQ2.2, we compare the
effectiveness—in terms of detection performance—of exist-
ing vulnerability discovery tools, encompassing any kind of
technique—i.e., static code analysis, dynamic analysis, and
prediction modeling—and how they behave in the context of
continuously-evolving projects. We also question how these
tools achieve complementary findings to comprehend how they
could be combined. We do not limit to automated tools but
also analyze the support given by established practices for
building secure code to developers during code review or other
activities requiring human supervision.

Û RQ3.1. What is the effectiveness and complementarity
of currently available solutions to identify vulnerabilities in
evolving software?

Û RQ3.2. What is the support given by secure development
best practices and methodologies to identify vulnerabilities
in evolving software?

All these preliminary studies are instrumental in achieving
the main goal. After answering all the described research
questions, we ask ourselves whether it is possible to combine
existing solutions into an adaptive automated approach, as
previously described.

Û RQ4. Is it possible to combine any security V&V solution
to maximize the discovery of vulnerabilities and minimize the
reaction time while suiting the needs of the specific project?



III. METHODOGICAL APPROACH

Our research employs several quantitative and qualitative
research methods. We mainly carry out empirical studies that
aim to find correlations among variables, such as understand-
ing the socio-technical factors linked to an increase or decrease
in the occurrence of vulnerabilities. We also present novel
tools and techniques to address the challenges that emerge
from the results observed in the empirical studies. Any solution
we propose is validated following a rigorous evaluation design,
e.g., comparing the performance with other existing solutions.

A. Data Collection

Most of our quantitative studies collect data through large-
scale mining of software repositories employing state-of-the-
art tools and techniques. In particular, we gather informa-
tion on the change history of software projects and how
developers make their contributions. In practice, the software
projects are selected from GITHUB using frameworks like
PYDRILLER [22] to build custom scripts to run the mining and
the data analyses. The data relating to known vulnerabilities
observed in the past are collected from well-established public
databases, such as the National Vulnerability Database (NVD),
which is a comprehensive source of known vulnerabilities
described by means of CVE (Common Vulnerabilities and
Exposure) records. Their mining is enabled by calling web
APIs (if available), downloading dumps, or scraping their web
pages when other means fail. Whenever we need to hear the
opinion of developers, we carry out surveys to collect many
answers. For more in-depth insights, we rely on interviews
and focus groups. We plan to reach out to the participants via
GITHUB or other platforms like PROLIFIC3 or REDDIT4 to
quickly reach the largest number of developers.

B. Data Analysis

Any kind of data collected will be analyzed using traditional
descriptive statistics. The statistical instruments can be differ-
ent depending on the specific research question to answer. For
instance, if the goal is to find correlations among two variables,
we rely on correlation tests and/or the interpretation of regres-
sion models. We also enrich the analyses by computing effect
size measures to give additional insights into the magnitude
of the observed effects. On the other hand, if the goal is to
evaluate a novel solution, we compare it with existing state-of-
the-art solutions using standard evaluation metrics. The results
are shown utilizing tables, box plots, and other graphs deemed
instrumental in explaining the results obtained.

IV. STATE OF WORK

A. RQ1 – Software Vulnerabilities in Evolving Software

Achieved Results. We investigated appearance trend of soft-
ware vulnerabilities in open-source systems [2]. Specifically,
we focused on how, when, and under which circumstances de-
velopers contribute to introducing vulnerabilities in the code-
base. Moreover, we analyzed how long they remain in the code

3 https://www.prolific.co 4 https://www.reddit.com

and which actions are put in place to remove them. This large-
scale investigation involved 3,663 known vulnerabilities—
mined from the National Vulnerability Database—and 1,096
distinct projects hosted on GITHUB. As part of our research,
we mined the commits that (likely) contributed to the in-
troduction of a vulnerability—known as Vulnerability Con-
tributing Commits (VCCs)—by applying a modified version
of the SZZ algorithm [23]–[25] starting from its public fixing
commits. We also manually validated such an approach with
two independent raters, observing 68% precision, which we
deemed enough for our purposes. The key results showed that
developers mainly contribute to vulnerabilities while doing
maintenance activities (in 60.93% of the cases), more than half
having the goal of fixing bugs. Vulnerabilities are generally
not introduced within a single contribution: an average of four
VCCs are required to introduce a vulnerability fully. In over
60% of the cases, the VCCs are spanned over four years, so
they appear to be introduced “slowly”. Once introduced, the
vulnerabilities commonly affect a limited amount of files (1.43
on average). The experience does not matter: newcomer and
expert developers can introduce vulnerable code—though the
trend can differ according to the specific vulnerability types.
The vast majority of vulnerabilities (83.99%) start appearing
the year after the project’s creation and are generally issued at
least 30 days before a release. They remain in the code for a
long time: half of them for over one year and a half. However,
they are generally removed with simple code changes, such
as escaping HTML entities or adding missing checks on the
boundaries of a buffer. The results observed were deemed
enough to answer our first research question.

Lesson Learned from RQ1

Vulnerabilities are a constant threat in evolving software.
Even the most experienced developers need further support
to improve their awareness of security issues and facilitate
the detection of vulnerabilities promptly.

B. RQ2.X – Novel Security V&V Solutions

Achieved Results. The findings observed when answering
RQ1 led us to reason about how developers can intercept
vulnerabilities before they are inserted into the source code,
so that reducing the exposure window in which they can
be exploited to attack the system. Hence, we experimented
with how machine learning performs when detecting software
vulnerabilities at the commit level, i.e., classifying potential
vulnerability-contributing commits from “safe” commits [26].
We evaluated several learning algorithms using three sets
of features extracted in different ways, i.e., (1) source code
metrics extracted from the syntactic structure of the files
changed in the commit, (2) process metrics describing the
commit’s characteristics within the change history, and (3) the
counting of tokens extracted from the source code directly
modified by the patch. We ran our experimentation on nine
JAVA projects with public fixing commits available from NVD,
so we could mine the VCCs using the same mining technique

https://www.prolific.co
https://www.reddit.com


used in the previous study [2]. The study brought out two
main findings: (1) ensemble learning algorithms perform way
better than basic models, though without achieving remarkable
results, and (2) combining different types of metrics does not
always improve the classification performance.

However, even the most effective model cannot completely
intercept all possible vulnerabilities. In our research, we did
not limit to dealing with the problem of detecting new vulnera-
bilities but also evaluating how easily they can be exploited to
carry out an attack. Thus, we developed SIEGE [27], an auto-
mated generator of exploit test cases that reach and execute any
target piece of vulnerable code. Such an approach leverages
a genetic algorithm that evolves a population of candidate
exploits, having the goal of minimizing the “distance” between
their execution traces and the target vulnerable components.
SIEGE targets any code construct appearing in the project’s
classpath, including external libraries. Consequently, SIEGE
can assess how risky it is to include a third-party dependency
known to be affected by a vulnerability. The preliminary
evaluation shows promising performance: SIEGE can produce
valid test cases for 11 real-world vulnerabilities reachable from
artificially-crafted projects.

Lesson Learned from RQ2.X

Commit-level detection of vulnerabilities requires further
research and experimenting with state-of-the-art methods
to improve the quality of the predictions. On the other
side, SIEGE is the first step toward setting up a “reaction”
pipeline that mitigates the threat of external vulnerabilities.

Ongoing Work. SIEGE runs a combination of static and
dynamic analyses on third-party vulnerabilities to assess their
exploitability. Yet, we believe that such an approach could fail
in certain circumstances. If SIEGE fails the generation of test
cases, then we cannot conclude that the target vulnerability
is unexploitable. For this reason, we have been experimenting
with how machine learning can detect likely-exploitable vul-
nerabilities leveraging only the textual information available
at the time of their disclosure. We extract features from
the unstructured text in online discussions mentioning such
vulnerabilities and evaluate several learning configurations.
Planned Work. SIEGE is a research prototype for which
we have planned several extensions. For instance, we plan to
improve its test generation engine in terms of efficiency and
explainability—e.g., describing the methods the test cases in-
voked to reach the vulnerability. SIEGE will also be evaluated
with real-world projects affected by real vulnerabilities.

C. RQ3.X – Effectiveness of Existing Security V&V Solutions

Ongoing Work. Currently, we have been investigating on
the extent to which developers know, understand, and adopt
best practices to implement secure software. In this study, we
ask which challenges the developers face when they consult
security guidelines—e.g., SEI CERT Coding Standards—or
adopt secure development methodologies—e.g., Microsoft’s

SDL. The data will be collected through surveys spread online
on channels like PROLIFIC or REDDIT. Our goal is to identify
the set of possible actions that guidelines designers can put in
place to make them more comprehensible and actionable even
to inexperienced developers.
Planned Work. There is no clear sign in the literature on
how the different vulnerability detection techniques (i.e., static
analysis, dynamic analysis, code review, etc.) perform. We
plan to fill this knowledge gap by providing an empirical com-
parison of a wide range of tools, techniques, and methods to
discover vulnerabilities. This investigation aims to profile the
effectiveness of the various existing techniques to understand
whether they achieve complementary findings, motivating the
need to create an engineered approach that combines them.

D. RQ4 – Combining Security V&V Solutions

Planned Work. As soon as we answer all the previous
research questions, we are ready to define the approach that
combines all the existing solutions and draws the best from
them. Such an idea can be designed in several ways. For
instance, we could implement the use of a meta-classifier
that suggests the best set of solutions (e.g., tools) to be
adopted, having the highest chances of finding vulnerabilities.
Such a meta-classifier would leverage the specific project’s
characteristics—i.e., product and process metrics—to make
its decisions. Then, a software agent would configure and
instantiate the solutions recommended by the meta-classifier
while fulfilling any project’s constraints, e.g., the available
time budget. We plan to validate the effectiveness and useful-
ness of this solution with real developers—e.g., in a controlled
experiment—and real-world projects in the wild—e.g., collect-
ing usage statistics from projects having the agent installed.

V. OPEN CHALLENGES

Software security has been attracting the attention of soft-
ware engineering researchers, who has been striving to develop
novel solutions for increasing the dependability of software
systems. Our research aims to advance the state of the art in
terms of verification & validation of security issues. During
our research, we identified additional challenges that the
research community should consider.
C1 – Security V&V should be more automated. Experi-
enced developers rely on personal knowledge to design secure
systems, while newcomers have trouble comprehending the
recommended practices. Novel automated tools and recom-
mendation systems are required to simplify and hasten the
adoption of secure development practices and processes.
C2 – Security V&V should be more “Continuous”. Most
existing automated tools are meant to be run in a stan-
dalone fashion and to process only a single snapshot of a
project, without considering its evolution over time. Indeed, re-
searchers commonly experiment with “throw-away” solutions
that are either not released at all or difficult to be employed in
practice. Hence, research works should not limit experimenting
with a yet-another security tool but also releasing actionable
solutions for the software engineering community.



REFERENCES

[1] G. McGraw, “Software security,” IEEE Security & Privacy, vol. 2, no. 2,
pp. 80–83, 2004.

[2] E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia, and F. Palomba, “The
secret life of software vulnerabilities: A large-scale empirical study,”
IEEE Transactions on Software Engineering, pp. 1–1, 2022.

[3] A. Austin and L. Williams, “One technique is not enough: A comparison
of vulnerability discovery techniques,” in 2011 International Symposium
on Empirical Software Engineering and Measurement, 2011, pp. 97–106.

[4] H. Shahriar and M. Zulkernine, “Mitigating program security
vulnerabilities: Approaches and challenges,” ACM Comput. Surv.,
vol. 44, no. 3, jun 2012. [Online]. Available: https://doi.org/10.1145/
2187671.2187673

[5] A. Kaur and R. Nayyar, “A comparative study of static
code analysis tools for vulnerability detection in c/c++ and
java source code,” Procedia Computer Science, vol. 171, pp.
2023–2029, 2020, third International Conference on Computing
and Network Communications (CoCoNet’19). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050920312023

[6] M. F. CyberRes, “Fortify static code analyzer.” [Online]. Avail-
able: https://www.microfocus.com/en-us/cyberres/application-security/
static-code-analyzer

[7] D. A. Wheeler, “Flawfinder.” [Online]. Available: https://dwheeler.com/
flawfinder/

[8] OWASP, “Zed attack proxy.” [Online]. Available: https://www.zaproxy.
org/

[9] M. Zalewski, “American fuzzy lop.” [Online]. Available: https:
//lcamtuf.coredump.cx/afl/

[10] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnera-
bilities in open-source software libraries,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2015, pp.
411–420.

[11] J. Jacobs, S. Romanosky, B. Edwards, I. Adjerid, and M. Roytman,
“Exploit prediction scoring system (epss),” Digital Threats, vol. 2,
no. 3, jul 2021. [Online]. Available: https://doi.org/10.1145/3436242

[12] C. SIG, “Common vulnerability scoring system.” [Online]. Available:
https://www.first.org/cvss/

[13] E. Foundation, “Eclipse steady.” [Online]. Available: https://projects.
eclipse.org/proposals/eclipse-steady

[14] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges and
solutions when adopting devsecops: A systematic review,” Information
and Software Technology, vol. 141, p. 106700, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584921001543

[15] D. Geer, “Are companies actually using secure development life cycles?”
Computer, vol. 43, no. 6, pp. 12–16, 2010.

[16] E. Venson, R. Alfayez, M. M. F. Gomes, R. M. C. Figueiredo, and
B. Boehm, “The impact of software security practices on development

effort: An initial survey,” in 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 2019,
pp. 1–12.

[17] M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[18] N. Imtiaz, S. Thorn, and L. Williams, “A comparative study of
vulnerability reporting by software composition analysis tools,” 2021.
[Online]. Available: https://doi.org/10.1145/3475716.3475769

[19] A. Algaith, P. Nunes, F. Jose, I. Gashi, and M. Vieira, “Finding sql
injection and cross site scripting vulnerabilities with diverse static anal-
ysis tools,” in 2018 14th European Dependable Computing Conference
(EDCC), 2018, pp. 57–64.

[20] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira,
“An empirical study on combining diverse static analysis tools for web
security vulnerabilities based on development scenarios,” Computing,
vol. 101, no. 2, pp. 161–185, Feb. 2019.

[21] J. D. Pereira, J. R. Campos, and M. Vieira, “Machine learning to
combine static analysis alerts with software metrics to detect security
vulnerabilities: An empirical study,” in 2021 17th European Dependable
Computing Conference (EDCC), 2021, pp. 1–8.

[22] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” 2018.

[23] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” in Proceedings of the 2005 International Workshop
on Mining Software Repositories, ser. MSR ’05. New York, NY,
USA: Association for Computing Machinery, 2005, p. 1–5. [Online].
Available: https://doi.org/10.1145/1083142.1083147

[24] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
426–437. [Online]. Available: https://doi.org/10.1145/2810103.2813604

[25] L. Yang, X. Li, and Y. Yu, “Vuldigger: A just-in-time and cost-aware tool
for digging vulnerability-contributing changes,” in GLOBECOM 2017 -
2017 IEEE Global Communications Conference, 2017, pp. 1–7.

[26] F. Lomio, E. Iannone, A. De Lucia, F. Palomba, and V. Lenarduzzi,
“Just-in-time software vulnerability detection: Are we there yet?”
Journal of Systems and Software, p. 111283, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121222000437

[27] E. Iannone, D. D. Nucci, A. Sabetta, and A. De Lucia, “Toward
automated exploit generation for known vulnerabilities in open-source
libraries,” in 2021 IEEE/ACM 29th International Conference on Pro-
gram Comprehension (ICPC), 2021, pp. 396–400.

https://doi.org/10.1145/2187671.2187673
https://doi.org/10.1145/2187671.2187673
https://www.sciencedirect.com/science/article/pii/S1877050920312023
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://www.zaproxy.org/
https://www.zaproxy.org/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3436242
https://www.first.org/cvss/
https://projects.eclipse.org/proposals/eclipse-steady
https://projects.eclipse.org/proposals/eclipse-steady
https://www.sciencedirect.com/science/article/pii/S0950584921001543
https://doi.org/10.1145/3475716.3475769
https://doi.org/10.1145/1083142.1083147
https://doi.org/10.1145/2810103.2813604
https://www.sciencedirect.com/science/article/pii/S0164121222000437

	Context
	Problem & Research Statements
	Methodogical Approach
	Data Collection
	Data Analysis

	State of Work
	RQ1 – Software Vulnerabilities in Evolving Software
	RQ2.X – Novel Security V&V Solutions
	RQ3.X – Effectiveness of Existing Security V&V Solutions
	RQ4 – Combining Security V&V Solutions

	Open Challenges
	References

