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ABSTRACT
Mobile applications usage has considerably increased since the last
decade. Successful apps need to make the users feel comfortable
while using them, thus demanding high-quality design and imple-
mentation. One of the most influencing factors for user experience
is battery consumption, which should have the minimum possible
impact on the battery. The current body of knowledge on energy
consumption measurement only reports approaches relying on
complex instrumentation or stressing the application with many
test scenarios, thus making it hard to measure energy consumption
in practice. In this work, we explore the performance of machine
learning to predict the energy consumption level of Java classes
in Android apps, leveraging only a set of structural properties
extracted via source code analysis, without requiring any hardware
measurements tools or executing the app at all. The preliminary
results show the poor performance of learning-based estimation
models, likely caused by (1) an insufficient amount of training data,
(2) a limited feature set, and (3) an inappropriate way to label the
dependent variable. The paper concludes by presenting the limi-
tations of the experimented models and the possible strategies to
address them.
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1 INTRODUCTION
Mobile applications (a.k.a. apps) have changed our lives and habits,
and their use has been increasing at a very high pace [6, 31]. Users
need to be comfortable with them in terms of functional and non-
functional aspects, and one of the main aspects influencing the
user’s satisfaction is energy consumption [39], that is one of the
main reasons a user uninstalls an application [42].

In this regard, previous studies have shown that this is one of
the main motivations that could lead users to uninstall an applica-
tion. Therefore, measuring the consumption of mobile apps is a key
factor for their success. In the last decade, several techniques have
been proposed in this respect. On the one hand, there exists purely
hardware-based solutions [9, 16], which rely on special instrumen-
tation to directly measure the amount of energy drained from the
battery when the app is exercised with specific test scenarios. On
the other hand, model- or software-based solutions [8, 12, 27, 32, 41]
leverages the APIs offered by the device, which compute an estimate
of the energy consumed using the sensors installed.

Although these solutions have proven reliable and precise, they
need to run realistic test cases that stress the different parts of
the code, which are not easy to define. Moreover, hardware-based
solutions require costly equipment, which can also be difficult to
set up and run. In this respect, the current state of the practice lacks
lightweight and rapid measurements, which can be run without
any particular requirements and in a short amount of time. Such
techniques may address both the developers’ and users’ need to
have early feedback on the app energy consumption level.

In this paper, we investigate the effectiveness of predicting the
energy consumption level of classes in mobile apps using of ma-
chine learning algorithms that leverage structural properties—i.e.,
code metrics and smells—extracted via source code analysis. In this
respect, previous works have shown correlations between object-
oriented codemetrics [15] and different types of code smells [25, 30],
making them a suitable option for predicting the consumption of the
components of an app. This investigation is carried on the dataset
by Palomba et al. [30], made of 620 Java classes belonging to 60
open-source Android apps. The preliminary results show that our
machine learning-based estimation models failed, in most cases, to
assign the right energy consumption level. Future work should pro-
vide additional insights on the efficiency of such energy estimation
models, such as by (1) building a dataset with additional training
data, (2) identifying new features affecting the energy consumption,
and (3) exploring new strategies for making more meaningful and
interpretable predictions.

https://doi.org/10.1145/1122445.1122456
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To summarize, this paper (1) presents an empirical comparison of
four differentmachine learners having the goal to predict the energy
consumption of Java classes in Android apps by leveraging code
smells and code metrics, and (2) provides an online appendix [18]
containing all the data and scripts employed to foster replications
and further experiments built upon this study.

2 RELATEDWORK
Energy consumption measurement of mobile apps has been the sub-
ject of several studies. In recent years the research has been focused
on envisioning tools and mechanisms to measure the battery drain
reliably and efficiently. On the one hand, there are hardware-based
solutions such as PowerScope [9] and GreenMiner [16], which
rely on circuits and physical measurement tools (e.g., a multimeter);
on the other hand, there exists software solutions that require little
or no equipment at all, e.g., PowerBooter [41], eLens [12], or
PETrA [8]. Almost all approaches calculate the consumption with
direct measurements on the device’s battery or via sensor data APIs.
However, there exist alternative ways to this purpose, such as the
one proposed by Gupta et al. [11], who built a linear regression
model to estimate the battery consumption ofWindows Phone apps
based on the .dll files called. Similarly, Aggarwal et al. [1] relied
on the number of system calls and the number of times they were
changed to predict the energy consumption of two Android apps.

Several empirical studies have shown other factors that nega-
tively or positively affect energy consumption. The way design
patterns are implemented [36], the choice of certain data struc-
tures [13], and the presence of specific types of code smells [5, 14,
25, 30] may largely decrease the energy efficiency of mobile apps.
Conversely, there is also evidence of the beneficial effects of good
programming practices, such as query optimization [34], the use of
lock-free data structures [17], and an appropriate management of
resources [21]. Violations to such practices have been branded as
Android-specific code smells by Reimann et al. [35]. Other choices,
such as calls to specific Android API methods [22], screen color
palettes [23], and sorting algorithms [4] have a variable impact,
depending on how they are applied.

Our contribution. This work increases the granularity level
of such predictions by providing estimates at the class-level of
Android apps. We rely on software metrics and characteristics
that can be computed via the sole static code analysis of the Java
classes that constitute an app. We also compare the performance of
different machine learning algorithms.

3 PRELIMINARY EVALUATION
The goal of the study is to predict the energy consumption level
of Java classes in the context of Android apps with the purpose of
making rapid and lightweight estimates by using structural proper-
ties of the source code. Specifically, we analyzed the performance of
different machine learning algorithms on making multi-class clas-
sification, i.e., predicting which is the overall energy consumption
level, at the class granularity level, irrespective of the belonging
Android app. We opted for a classification as its predictions pro-
vide more meaningful and interpretable results than a regression
model, which would estimate the consumption using a continuous
value (measured in Joule). Based on these considerations, we asked:

RQ. How good is a machine-learning-based classification model in

predicting the energy consumption level of Java class in Android

apps?

3.1 Context
The context of the study consists of 60 real-world open-source
Android apps whose energy consumption was measured in the
work by Palomba et al. [30] These apps differs in terms of size and
scope and come from the F-Droid repository.1 The dataset contains
the estimated energy consumption of methods of 620 public classes
belonging to the 60 apps. The estimates were done with PETrA [8],
a fully software-based energy measurement tool that stress each
method with multiple runs of randomly generated test cases2 to
profile the energy consumption, measured in Joule, according to the
device’s battery sensors.3 The method-level consumption values of
all the repeated runs had been aggregated using the mean since no
outlier was found in the measurements distributions.

In addition, the dataset reports the number of occurrences of 19
types of code smells affecting each class. Specifically, five of which
are regular object-oriented smells that the authors detected using
the DECOR detection rules [24], while the remaining 14 are specific
to the Android context—as defined in the catalog4 of Reimann et
al. [35]—and detected using the tool aDoctor [29].

The described dataset was used to train and test several pre-
diction models, built using three learning algorithms: Multinomial

Logistic Regression (MLR) [2], Support Vector Machine (SVM) [7],
and Decision Tree (DT) [3], as they are widely adopted in classifi-
cation tasks. We involved a random multi-class classifier—which
assigns a random energy consumption class to a given data point—
as comparison baseline for the models’ performances. We exploited
the implementation of these models provided by the TidyModels5
package for the R programming language.

3.2 Study Design
In the following we describe how we arranged the experimental
process, starting from the selection of the dependent variable and
the independent variables, to the definition of the entire training
and testing pipeline, alongside the metrics used to evaluate the
models’ performances.

Dependent Variable. Since our study focuses on predicting
the energy consumption at the class granularity level, we brought
the method-level energy measurements—contained in the input
dataset—to the class level by aggregating the consumption of all
the methods belonging to a given class. This choice was driven by
the fact that our goal was to investigate whether static factors can
effectively predict energy consumption. Unfortunately, most of the
static factors that have been associated with energy consumption
in the past are all defined at a class-level granularity, hence we
had to aggregate method-level observations to be able to build our

1F-Droid website: https://f-droid.org/
2Generated with Monkey: https://developer.android.com/studio/test/monkey
3Collected with BatteryStats: https://tinyurl.com/batterystats
4The smells catalog:https://martinbrylski.github.io/android_smells/
5TidyModels website: http://tidymodels.org

https://f-droid.org/
https://developer.android.com/studio/test/monkey
https:// tinyurl.com/batterystats
https://martinbrylski.github.io/android_smells/
http://tidymodels.org
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models. More details are reported in Section 3.4. We took into con-
sideration three ways of aggregation: mean, sum, and maximum of
the methods of a class. We applied a set of pre-processing steps to
prepare the data for the classification task. We first normalized the
dependent variable (for each aggregation) using the log transfor-
mation [19] to make its distribution more similar to a Gaussian one.
Then, we mapped the normalized values to their percentiles and
assign an energy consumption level based on the quartiles of the
distribution (𝑄1,𝑄2,𝑄3), so that each bin contains the same amount
of classes. Specifically: [𝑚𝑖𝑛..𝑄1 [→ ‘Negligible’, [𝑄1 ..𝑄2 [→ ‘Low’,
[𝑄2 ..𝑄3 [→ ‘Moderate’, and [𝑄3 ..𝑚𝑎𝑥] → ‘High’. We chose classifi-
cation over regression since the target of our measurement is the
end users, who will find more useful and interpretable an informa-
tion on the overall consumption level of the application (just like it
is done for house appliances) rather than the absolute amount of
Joule consumed.

Independent Variables. The occurrences of the 19 code smells
appearing in the dataset were treated as independent variables for
our models, as some of them have been shown to be positively cor-
related with the energy consumption—i.e., the higher the number
of instances, the higher the battery drain. This is the case of Inter-
nal Setter, Leaking Thread, and Member Ignoring Method Android-
specific code smells, which can affect the consumption up to 87
times more than non-smelly classes.

Once we had collected the smell data, we mined additional met-
rics concerning structural code properties—such as size, cohesion,
coupling, and complexity. These metrics were computed via in-
spection of the Abstract Syntax Trees (ASTs) of all the 620 Java
classes found in the dataset. Specifically, we used an our own script
(available in our online appendix [18]), to extract 22 different met-
rics, which we considered as additional independent variables of
the models. We suspect that these kind of metrics may give addi-
tional guidance to our prediction models, as hinted by Hindle [15].
For example, long or complex classes may affect energy consump-
tion since they requires executing more code or more complex
programming constructs. To summarize, we involved 41 different
independent variables, whose descriptions are all reported in our
online appendix due to space limitations [18].

Machine Learning Pipeline. After collecting the dependent
and independent variables, we configured the machine learners for
predicting the energy consumption. We evaluated the four learning
algorithms on the same dataset using a 10-fold cross-validation
strategy [38], in which the dataset is divided into 10 random subsets
of approximately equal size (folds). The training and testing phases
were repeated 10 times. Iteratively, nine folds were used to train the
models, while the remaining one was used as the test set, ensuring
that in each iteration a different permutation of folds is used. Before
running the training phase of each iteration, we applied a feature
selection strategy to remove those predictors (1) showing near-
zero variance (i.e., predictors having the same value in almost all
data points), and (2) having large absolute correlations (in this case
0.6)—using the Spearman’s rank correlation coefficient [37]—with
other predictors. An example of near-zero variance predictor is
one that, for 1000 samples, has two distinct values and 999 of them
are a single value. These steps were accomplished to remove those
variables that would have given poor or no information to the
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Figure 1: Box plots representing the F-measure values ob-
tained during the 10-fold cross validation of the four clas-
sifiers selected, in the aggregation by sum case. The straight
horizontal lines in the boxes indicate the median, while the
red dots the mean.

models, and mitigate the effect of multi-collinearity [28]. Then,
we took into account the tuning of models’ hyper-parameters by
running the Grid Search algorithm. Internally, it relies on another
cross validation to systematically search the best combination of
hyper-parameters, so that a given error measure is minimized—
here we selected the F-measure [33]. Finally, we trained the models
on the test set using the optimal hyper-parameter configuration,
and run the predictions on the test set—without considering the
predictors dropped after the feature selection done previously.

EvaluationMetrics. The prediction results were used to obtain
the confusion matrix, reporting the outcomes for each energy con-
sumption level (i.e., 4 × 4 matrix). For each class 𝑐 , we computed
Precision, Recall, and F-measure performance metrics [33] for the
multi-class classification task, obtaining their one-vs-all version
(a.k.a., macro measures), i.e., when treating 𝑐 as the positive class
and the remaining ones as a single negative class. Section 3.3 dis-
cusses the achieved results only in terms of F-measure distributions
obtained by the 10-fold cross validation on the sum aggregation,
leaving the other results in our online appendix [18]. The F-measure
distributions are represented via box plots and compared using the
Friedman test [10] with the Nemenyi post-hoc test [26], and re-
ported the results using MCB plots (Multiple comparisons with
the best) [20]. The Friedman test is a non-parametric equivalent
to ANOVA which does not assume any distribution of the data.
It allows us to assess the significance of the different outcomes
achieved across multiple test attempts (in our case, datasets) when
using different treatments (in our case, the various models). We set
the significance level to 𝛼 = 0.05 [10]. All the study materials can
be found on the online appendix [18].
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Figure 2: Nemenyi test results for statistical significance be-
tween the F-measure values obtained during cross valida-
tion of the four classifiers (using the sum aggregation). The
results are presented by mean of MCB plots [20].

3.3 Results
Figure 1 shows boxplots reporting the F-measure values achieved by
Decision Tree (DT), Multinomial Logistic Regression (MLR), Support
Vector Machine (SVM), and the Random Classifier (RND), respec-
tively. We report only the case of aggregation by sum, since it is
the one performing better than the others, however similar. Ac-
cording to the figure, the classification performance appears to be
pretty low, regardless of the classifier, with an F-measure ranging
between 0.30 and 0.40. When turning to the comparison between
the classifiers, SVM appears to perform slightly better than the
other two while the Random Classifier achieves a clearly lower
f-measure, thus indicating that, poor as it is, the performance of
the proposed classification technique is still better than a simple
random classification. These observations are also confirmed by
the results of Nemenyi test, as reported in Figure 2, in which SVM
and MLR appear to perform significantly better than both DT and
the Random Classifier. However, given the preliminary nature of
the study, we can not draw certain conclusions.

The poor performances might be the consequence of several
choices. Firstly, the dataset we exploited is made of only a scarce
amount of data points (the Java classes), limiting what the models
learned from them. This urges the need for richer datasets having a
large amount of energy measurements, to enable machine learning-
based energy estimation. Secondly, we considered a limited set
of features, motivated by the availability of tools able to compute
them in short time and without running or building the apps. As a
matter of fact, the literature showed the existence of other static
properties correlated with the energy consumption of apps, that
should be involved in future work. Finally, the performance may
be influenced by the splitting criterion adopted to assign each class
to the corresponding energy consumption level. The splitting was
performed by dividing the variable in quartiles according to its

distribution, hence being strongly related to other observation in the
dataset. More details about this aspect are reported in Section 3.4.

3.4 Limitations
One of the study’s major limitations lies in the calculation of our de-
pendent variable. While the experimental dataset provides method-
level measurements for the energy consumption, we aggregated
such measures by computing, for each class, the mean, the sum,
and the maximum of the energy consumption for all the methods
in it contained. This choice could have biased our results since
an aggregated measure may not represent the actual class energy
consumption. We made this decision owing to the limited amount
of method-level predictors that could be extracted from the source
code alone—indeed, most code metrics and smells are defined at
the whole class level, reducing the number of possible explana-
tory variables for the models. In the future, we plan to replicate the
experiment by directly relying on a dataset containing class-level in-
formation about the dependent variable. It must be also considered
that, for the sake of having as much training data as possible, we
trained the models using an heterogeneous dataset, containing class
instances coming from systems of different domains. This might
have inevitably impacted the overall performance. In the follow-up
studies, we plan to consider a more homogeneous dataset, allowing
a within-project approach, whenever available.

Other possible imitations are related to the data set used to train
the classifiers, since it did not include secondary features that might
impact both dependent and some of the independent variables. In
this preliminary work, we did not consider any confounding factors,
restricting the interpretation of the selected structural properties.
Moreover, the explainability of the models was neglected (e.g., vari-
able importance) given the preliminary nature of the study. We
plan to consider them in a complete evaluation.

Finally, the splitting criterion we applied to label the energy
consumption values into the four levels strongly depends on the
corresponding variable distribution in the dataset. Such a criterion
may threaten the generalizability of the presented classification
approach. Indeed, the labeling phase should be performed on a
larger and more representative dataset to be applicable in practice.
We suspect that using a different and more robust labeling criteria,
may solve this limitation and provide “fairer” energy consumption
levels. For instance, an ideal schema could be based on the EU

energy labeling schema,6resambling Wilke et al’s idea [40],where
appliances are assigned to a letter (A, B, C, etc.) depending on their
energy consumption (the closer to A, the lower).

4 CONCLUSION
This paper presents a mobile app’s energy consumption estimation
technique based on static properties (i.e., code metrics and smells).
The proposed approach predicts the energy consumption level
for Java class in Android applications. Results of a preliminary
evaluation indicate an average F-measure of ≈ 0.4, suggesting that
the technique still needs to be further improved to be considered for
real applications. Our future research directions aim to replicate the
study on a larger dataset and consider a broader set of predictors.

6https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R1369
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