
Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations
Emanuele Iannone  
Ph.D. Student
Software Engineering (SeSa) Lab
University of Salerno

eiannone@unisa.it 
@EmanueleIannone3 

https://emaiannone.github.io

mailto:eiannone@unisa.it
https://emaiannone.github.io

Emanuele Iannone

Fabio Palomba

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Fundamentals of Mining Software Repositories for Vulnerability Prediction:
The Methodological Perspective

Next on this lecture

Fundamentals of Mining Software Repositories for Vulnerability Prediction:
The Practical Perspective

(1) What kind of data do we have to collect?
(2) How do we query the data sources?
(3) How can we make mining smart and efficient?
(4) How do we process the collected data?
(5) How do we prepare the data for the prediction models?

(1) How does a general predictive task work?
(2) How can MSR support vulnerability prediction?
(3) Which data processing activities are required for predictive tasks?
(4) What are the pitfalls when developing a vulnerability prediction model?
(5) What are the current limitations and challenges you are called to face?

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Predicting vulnerabilities needs…
machine learning

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

But machine learning needs…

lots of data…

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

But machine learning needs…

lots of data…

possibly of high quality

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

But high quality data needs…

reliable data sources…

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

But high quality data needs…

reliable data sources…

and time!

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Mining data IS time-consuming! We must be smart
and efficient to minimize the times we go back to
our steps and re-do everything.

To minimize such a risk, it is good to ask ourselves:

Answering these questions helps to avoid collecting:

Too much data
(pointless workload)

Too few data
(no good models)

What kind of predictions do I want to make?

How do I plan to use the collected data?
What do I want to achieve?

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file
in a specific project is vulnerable.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Build a VPM that determines whether a C file
in a specific project is vulnerable.

The object of the classification is files written in C: the ML models
will train on a set of C files and make their predictions on C files.

We have to mine data associated with C files; the more, the better.

Let’s be a bit more practical with an example…

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Build a VPM that determines whether a C file
in a specific project is vulnerable.

We can collect historical data regarding that specific project, go for
synthetic C files (transfer learning), or even a mixture. This is

a methodological decision that must be taken seriously.

Let’s be a bit more practical with an example…

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Build a VPM that determines whether a C file
in a specific project is vulnerable.

We need information that helps a classifier recognize the
differences between a vulnerable C file and a “safe” C file. In other words,

we need the data that will be used to encode/extract the features.

Let’s be a bit more practical with an example…

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Let’s assume we find a dataset
with records of past vulnerable C
files observed in a project.

int main() {
 doStuff();
 doSth();
 return 0;
}

Author: Emanuele
Date: 01-09-1996
Bytes: 20,000

Candidate Features

Any data that could be used to extract/encode features should be
collected. We can store the “high-level” data to save storage space,

and only later can we run the algorithms to extract the features.

Lines of Code
Functions

Tokens Stream
System Calls

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file
in a specific project is vulnerable.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Let’s assume we find a dataset
with records of past vulnerable C
files observed in a project.

int main() {
 doStuff();
 doSth();
 return 0;
}

Author: Emanuele
Date: 01-09-1996
Bytes: 20,000

Candidate Features

Let’s be a bit more practical with an example…

Source Code

Build a VPM that determines whether a C file
in a specific project is vulnerable.

Any data that could be used to extract/encode features should be
collected. We can store the “high-level” data to save storage space,

and only later can we run the algorithms to extract the features.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Let’s assume we find a dataset
with records of past vulnerable C
files observed in a project.

int main() {
 doStuff();
 doSth();
 return 0;
}

Author: Emanuele
Date: 01-09-1996
Bytes: 20,000 Metadata is not necessarily useful as features. The author's name does not

make sense and could be harmful: it might give the classifiers a “shortcut”
to make distorted predictions (exploiting spurious correlations).

Source Code

Author’s name

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file
in a specific project is vulnerable.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Let’s assume we find a dataset
with records of past vulnerable C
files observed in a project.

int main() {
 doStuff();
 doSth();
 return 0;
}

Author: Emanuele
Date: 01-09-1996
Bytes: 20,000

Features are not the only reason
why we mine data. There are
other purposes for which we
can use the mined data.Source Code

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file
in a specific project is vulnerable.

Author’s name

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Let’s assume we find a dataset
with records of past vulnerable C
files observed in a project.

int main() {
 doStuff();
 doSth();
 return 0;
}

Author: Emanuele
Date: 01-09-1996
Bytes: 20,000

Data Selection

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file
in a specific project is vulnerable.

Source code (again). It can be used to filter out
additional files. For instance, we could drop empty
files, not parsable files, or files with no functions.

It’s not rare that we re-use the same “high-level” data for
multiple purposes, i.e., data selection and features.

Creation Date. It can be used to filter out specific files.
For instance, we could drop outdated files, as we think
they are not reliable enough for today’s predictions.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Let’s assume we find a dataset
with records of past vulnerable C
files observed in a project.

int main() {
 doStuff();
 doSth();
 return 0;
}

Author: Emanuele
Date: 01-09-1996
Bytes: 20,000

Label Assignment

But wait, there is more!

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file
in a specific project is vulnerable.

Source code (again). It can be inspected with a static
vulnerability analyzer to obtain the Nr. warnings. This
metric can be used to set our ground truth.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

To sum up, we mine data for three main reasons:

Candidate Features

Data Selection

Label Assignment

Data intended to be used for extracting features, either manually
or automatically.

Data intended to support the selection of valid instances, i.e.,
those that will be seen by the models.

Data intended to support the process of determining the labels
to assign to each instance.

LOC, #Functions, #System Calls, Token Stream, Past Faults, Nr. maintainers

Creation Date, Size, Vulnerability Type/CWE

Analysis tool’s report, Vulnerability Insertion Date, Vulnerability Type/CWE

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

To sum up, we mine data for three main reasons:

Candidate Features

Data Selection

Label Assignment

In this respect, I want to introduce the first of my personal 10
commandments, i.e., 10 lessons I learned while working on
mining data for vulnerability prediction.

1
Thou shalt not be too eager to

terminate the mining

There will always be some data that you forgot to collect, and
you’ll regret it. Take your time, and think!

When in doubt, collect all data available if
it does not cost you too much. If you have
no time, do it later… think incrementally!

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real
deal now is to find an “entry point”: an interface allowing the retrieval of the
stored data.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real
deal now is to find an “entry point”: an interface allowing the retrieval of the
stored data.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real
deal now is to find an “entry point”: an interface allowing the retrieval of the
stored data.

NVD website offers many mechanisms to
recover its data. This “CVE and CPE APIs”
seems interesting. Let’s navigate this link.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real
deal now is to find an “entry point”: an interface allowing the retrieval of the
stored data.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real
deal now is to find an “entry point”: an interface allowing the retrieval of the
stored data.

We are interested in CVEs,
not in CPEs.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real
deal now is to find an “entry point”: an interface allowing the retrieval of the
stored data.

Here we discover that with a
single HTTP GET request, we can
retrieve the info of a given CVE.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real
deal now is to find an “entry point”: an interface allowing the retrieval of the
stored data.

Here we discover that with a
single HTTP GET request, we can
retrieve the info of a given CVE.

The example provided (https://services.nvd.nist.gov/rest/json/cve/1.0/CVE-2021-41172) returns a JSON
with the data of the requested CVE.

However, we first need the full list of CVEs… otherwise, we won’t know which CVE to request.

{"resultsPerPage":1,"startIndex":0,"totalResults":1,"result":
{"CVE_data_type":"CVE","CVE_data_format":"MITRE","CVE_data_version":"4.0","CVE_data_timestamp":"2022-09-01T1
0:12Z","CVE_Items":[{"cve":{"data_type":"CVE","data_format":"MITRE","data_version":"4.0","CVE_data_meta":
{"ID":"CVE-2021-41172","ASSIGNER":"security-advisories@github.com"},"problemtype":{"problemtype_data":
[{"description":[{"lang":"en","value":"CWE-79"}]}]},"references":{"reference_data":[{"url":"https://
github.com/AntSword-Store/AS_Redis/issues/1","name":"https://github.com/AntSword-Store/AS_Redis/issues/
1","refsource":"MISC","tags":["Exploit","Issue Tracking","Third Party Advisory"]},{"url":"https://
github.com/Medicean/AS_Redis/security/advisories/GHSA-j8j6-f829-w425","name":"https://github.com/Medicean/
AS_Redis/security/advisories/GHSA-j8j6-f829-w425","refsource":"CONFIRM","tags":["Third Party Advisory”]},
{"url":"https://mp.weixin.qq.com/s/yjuG6DLT_bSRnpggPj21Xw","name":"https://mp.weixin.qq.com/s/
yjuG6DLT_bSRnpggPj21Xw","refsource":"MISC"
[...]

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://services.nvd.nist.gov/rest/json/cve/1.0/CVE-2021-41172

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real
deal now is to find an “entry point”: an interface allowing the retrieval of the
stored data.

Fortunately, we can collect
multiple CVEs at once… right?

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real
deal now is to find an “entry point”: an interface allowing the retrieval of the
stored data.

Fortunately, we can collect
multiple CVEs at once… right?

Let’s try this one: https://services.nvd.nist.gov/rest/json/cves/1.0/
{“resultsPerPage":20,"startIndex":0,"totalResults":183571,"result":
{"CVE_data_type":"CVE","CVE_data_format":"MITRE","CVE_data_version":"4.0","CVE_data_timestamp":"2022-09-01T10:35Z
","CVE_Items":[{"cve":{"data_type":"CVE","data_format":"MITRE","data_version":"4.0","CVE_data_meta":
{"ID":"CVE-2022-3072","ASSIGNER":"security@huntr.dev"},"problemtype":{"problemtype_data":[{"description":
[{"lang":"en","value":"CWE-79"}]}]},"references":{"reference_data":[{"url":"https://huntr.dev/bounties/9755ae6a-
b08b-40a0-8089-c723b2d9ca52","name":"https://huntr.dev/bounties/9755ae6a-b08b-40a0-8089-
c723b2d9ca52","refsource":"CONFIRM","tags":[]},
[…]

This should be fine, but it seems we just obtained… 20 CVEs?! How is that possible? Many public APIs have two
main limitations: pagination, which limits the amount of data per response, and rate limits, which prevent making
too many requests in a short period, especially without an API token (to request).

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://services.nvd.nist.gov/rest/json/cves/1.0/

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

If these limitations are too tight, we must look for something different. Let’s make a
quick Google search: “cve api”.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

We discover CVE Search, a tool that automatically
imports CVEs into MongoDB. CVE Search also
exposes public web API operated by Computer
Incident Response Center Luxembourg (CIRCL)
initiative. Let’s take a look.

If these limitations are too tight, we must look for something different. Let’s make a
quick Google search: “cve api”.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

We can get the list of all the vendors…

…the list of their products…

…and the CVEs of each product.

But even in this case, we might need
several requests for the complete list
of CVEs. Apparently, there are no
particular limitations…

If these limitations are too tight, we must look for something different. Let’s make a
quick Google search: “cve api”.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Requests project on PyPI: https://pypi.org/project/requests

Querying an API is not that difficult. We can opt for:

def call_api(url, try_num=1, max_try=None):
 try:
 headers = {'Accept': 'application/json'}
 return requests.get(url, headers=headers).json()
 except:
 time.sleep(2**try_num + random() * 0.01)
 if max_try and try_num < max_try:
 return call_api(url, try_num=try_num+1)
 else:
 return None

Command-line tools. For example, wget.

Dedicated libraries. For example, Python’s requests.

wget https://cve.circl.lu/api/cve/cve-2020-1234

https://pypi.org/project/requests/

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

def call_api(url, try_num=1, max_try=None):
 try:
 headers = {'Accept': 'application/json'}
 return requests.get(url, headers=headers).json()
 except:
 time.sleep(2**try_num + random() * 0.01)
 if max_try and try_num < max_try:
 return call_api(url, try_num=try_num+1)
 else:
 return None

wget https://cve.circl.lu/api/cve/cve-2020-1234

To recap, when does public web API worth it?

When we just need a sample of the full content. For instance, we are
only interested in collecting the CVEs published since 2019 or those with
CVSS Base Score = 10. Not suitable for large-scale mining.

When there are no limits! This is undoubtedly the best-case scenario,
but it is not quite common as you would expect… or there might be a
catch, e.g., poor-quality data are returned.

When we just need to enrich a set of known data. For instance, we
already own some CVEs and want to add more data using the “single
CVE” endpoint.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

If we closely inspect both the NVD and CVE Search websites, we discover the
existence of dumps (called data feeds), i.e., JSON files containing a subset of the full
content of the databases.

JSON format

Extended dump
(daily, per year)

JSON format

“Recent” dump

(2-hourly)

Partial dumps 
(daily, CVEs and references)

Extended dump

(daily, full)

I tend to use this one, as it’s “just” less than
200MB. I integrate the missing data with
API calls or other methods (e.g., scraping).

Constantly monitor their websites as things
can change through time. For example, by
the end of 2023, NVD will only offer APIs.

APIs are cool, but they are not the only entry point to data sources…

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

We read the file and get the JSON
of all CVEs, which becomes a
dictionary in Python.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

We loop through CVEs and query
additional data using CVE Search API.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

We update the in-memory data structure.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

We periodically save the processed data
into our storage.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

In this respect, the way we organize our storage is critical. We should decide
the format and the mechanism to store the processed data efficiently.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

We periodically save the processed data
into our storage.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

In this respect, the way we organize our storage is critical. We should decide
the format and the mechanism to store the processed data efficiently.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

SQL DB

JSON

CSV

Perfect with deeply nested
data, less straightforward to
set up, no diff.

Straightforward and memory
efficient, good diff, can’t
handle nested data.

Human-readable, handles
nested data, nice diff, memory
inefficient (can be compacted).

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

Choose whichever you think is the
best, depending on your needs.
The important is to…

2
Honour thy storage

Store in different files,
each with a chunk of M
data elements (CVEs), to
reduce the writing time.

In this respect, the way we organize our storage is critical. We should decide
the format and the mechanism to store the processed data efficiently.

Store in different files,
each with a chunk of M
data elements (CVEs), to
reduce the writing time.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

Choose whichever you think is the
best, depending on your needs,
the important is to…

2
Honour thy storage

def store_chunk(items, filepath, num_chunk, lower, upper=None):
 chunk = {k: v for (k, v) in items[lower:upper]}
 num_chunk_str = "0" + str(num_chunk) if num_chunk < 10 else str(num_chunk)
 dest_file = join(dirname(filepath), num_chunk_str + "_" + basename(filepath))
 with open(dest_file, "w") as json_file:
 json.dump(chunk, json_file, indent=2)

def store_cves(data, filepath, chunk_size=5000, rewrite_past_chunks=False):
 items = [(k, v) for k, v in data.items()]
 selected = 0
 num_chunk = 0
 while len(items) - selected > chunk_size:
 upper = selected + chunk_size
 if rewrite_past_chunks:
 store_chunk(items, filepath, num_chunk, selected, upper)
 selected = upper
 num_chunk += 1
 if len(items) - selected > 0:
 store_chunk(items, filepath, num_chunk, selected)

In this respect, the way we organize our storage is critical. We should decide
the format and the mechanism to store the processed data efficiently.

Store in different files,
each with a chunk of M
data elements (CVEs), to
reduce the writing time.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

Choose whichever you think is the
best, depending on your needs,
the important is to…

2
Honour thy storage

def store_chunk(items, filepath, num_chunk, lower, upper=None):
 chunk = {k: v for (k, v) in items[lower:upper]}
 num_chunk_str = "0" + str(num_chunk) if num_chunk < 10 else str(num_chunk)
 dest_file = join(dirname(filepath), num_chunk_str + "_" + basename(filepath))
 with open(dest_file, "w") as json_file:
 json.dump(chunk, json_file, indent=2)

def store_cves(data, filepath, chunk_size=5000, rewrite_past_chunks=False):
 items = [(k, v) for k, v in data.items()]
 selected = 0
 num_chunk = 0
 while len(items) - selected > chunk_size:
 upper = selected + chunk_size
 if rewrite_past_chunks:
 store_chunk(items, filepath, num_chunk, selected, upper)
 selected = upper
 num_chunk += 1
 if len(items) - selected > 0:
 store_chunk(items, filepath, num_chunk, selected)

Basically, each 5000 CVEs, a new file is
stored and the writings happen on that file,
untile reaching 5000 CVEs, and so on…

In this respect, the way we organize our storage is critical. We should decide
the format and the mechanism to store the processed data efficiently.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an
iterable data structure (using any programming language), then loop through each
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

The mining heavily relies on this
loop. We should put in place some
other good practices.

3
Thou shalt not take
hostage your machine

Mining can take several
days/weeks. Put in place
several actions to improve
your mining scripts.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

[Tip #1] Monitor the loop progress.
Don’t make a guess, but monitor the
loop status using a progress bar.
Other than using the terminal, you
can also print the progress onto a
file—good when running the script
on a server.

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in raw_cves:
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in tqdm(raw_cves):
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

80%|██████████ | 160/200 [02:00<08:00, 1.3it/s]

If each element takes about the
same time, we have a good estimate
of the duration of the loop.

TQDM project on PyPI: https://pypi.org/project/tqdm/

I recommend the TQDM library,
which implements a good-looking
progress bar by just wrapping the
iterable structure in a function.

[Tip #1] Monitor the loop progress.
Don’t make a guess, but monitor the
loop status using a progress bar.
Other than using the terminal, you
can also print the progress onto a
file—good when running the script
on a server.

https://pypi.org/project/tqdm/

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for cve in tqdm(raw_cves):
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 store_cves(cves, cves_file)

[Tip #2] Save intermediate
results. Storing all the processed
data at the end of the loop is not a
smart move— things can go wrong
(power outage, accidental SIGKILL),
and we have to start over. However,
doing it at every iteration can be
costly. Hence, storing data every K
iterations is a good balance
between speed and safety.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for idx, cve in enumerate(tqdm(raw_cves)):
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 if idx + 1 == len(raw_cves) or \
 len(cves) % 100 == 0:
 store_cves(cves, cves_file)

We need the iteration index.

We write into storage at the last iteration or
once every 100 CVEs successfully processed.

[Tip #2] Save intermediate
results. Storing all the processed
data at the end of the loop is not a
smart move— things can go wrong
(power outage, accidental SIGKILL),
and we have to start over. However,
doing it at every iteration can be
costly. Hence, storing data every K
iterations is a good balance
between speed and safety.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = {}
for idx, cve in enumerate(tqdm(raw_cves)):
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 if idx + 1 == len(raw_cves) or \
 len(cves) % 100 == 0:
 store_cves(cves, cves_file)

[Tip #3] Restart from the
intermediate results. The
intermediate results are not only
meant for back-ups but can be
used to find the point where to
start again after an interruption.
Basically, we read the file of
processed CVEs and avoid re-
processing them.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = read_cves(cves_file)
for idx, cve in enumerate(tqdm(raw_cves)):
 if cve in cves:
 continue
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 if idx + 1 == len(raw_cves) or \
 len(cves) % 100 == 0:
 store_cves(cves, cves_file)

We initialize by reading any file
containing processed CVEs.

If a CVE has already been
processed, skip it.

def read_cves(filepath):
 dn = dirname(filepath)
 bn = basename(filepath)
 data = {}
 for f in sorted(listdir(dn)):
 path = join(dn, f)
 if exists(path) and getsize(path):
 with open(path, "r") as in_file:
 data.update(json.load(in_file))
 return data

[Tip #3] Restart from the
intermediate results. The
intermediate results are not only
meant for back-ups but can be
used to find the point where to
start again after an interruption.
Basically, we read the file of
processed CVEs and avoid re-
processing them.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = read_cves(cves_file)
for idx, cve in enumerate(tqdm(raw_cves)):
 if cve in cves:
 continue
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 if idx + 1 == len(raw_cves) or \
 len(cves) % 100 == 0:
 store_cves(cves, cves_file)

[Tip #4] Enable graceful
interruption. Sometimes we have
to interrupt the script manually.
However, interrupting during a file
writing has the risk of corrupting its
content: we lose our progress.
Hence, we can intercept the
CTRL+C (SIGINT), set a flag to true,
and stop the loop in a safe state
(e.g., between iterations) to avoid
damage.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

endpoint = "https://cve.circl.lu/api/cve"
dump_content = {}
with open("path/to/dump.json", "r") as in_file:
 dump_content = json.loads(in_file.read())
raw_cves = dump_content["cves"]
cves_file = "path/to/cves.json"
cves = read_cves(cves_file)
stop_signal = False
signal.signal(signal.SIGINT, signal_handler)
for idx, cve in enumerate(tqdm(raw_cves)):
 if stop_signal:
 break
 if cve in cves:
 continue
 resp = call_api(join(endpoint, cve))
 # Addition mining goes here
 cves[cve] = {
 "cwe": resp["cwe"],
 "cvss": resp["cvss"]
 }
 if idx + 1 == len(raw_cves) or \
 len(cves) % 100 == 0:
 store_cves(cves, cves_file)

We can use a custom handler
triggered when a SIGINT is received.

The handler just sets a global variable to
true, queried at the start of each iteration.

def signal_handler(sig, frame):
 global stop_signal
 print('Going to gracefully stop')
 stop_signal = True

[Tip #4] Enable graceful
interruption. Sometimes we have
to interrupt the script manually.
However, interrupting during a file
writing has the risk of corrupting its
content: we lose our progress.
Hence, we can intercept the
CTRL+C (SIGINT), set a flag to true,
and stop the loop in a safe state
(e.g., between iterations) to avoid
damage.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

It is known that things never go as expected. It happens continuously: we run our
fantastic mining script before ending the work day. We go back home, arrange
something with our friends, eat or drink something, and then go to sleep.
The next day at the office we discovered something terrible: the script crashed 10
minutes after we closed our office’s door!

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

4
Thou shalt not ignore
corner cases

Make your script resistant to unforeseen
events. We could wrap all the loop logic
inside a great try-catch block that captures
any unexpected exception.

It is time to introduce another commandment:

The idea is to catch the exception and skip that iteration. At the same
time, we temporarily store the problematic CVEs in a dedicated file,
with the associated exception message as well.

Later, we can inspect this file, try to figure out a way to fix the issue, and re-run
the loop to include the discarded CVEs.

TMP

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Yet, there might be cases when we can’t fix the CVE, e.g., some critical data are
entirely missing or too malformed to be fixed.

The idea is to solve as many issues as possible. When not possible, we
permanently store the problematic CVEs in another dedicated file, with
the associated exception message as well.

BAD

The idea is to catch the exception and skip that iteration. At the same
time, we temporarily store the problematic CVEs in a dedicated file,
with the associated exception message as well.

Later, we can inspect this file, try to figure out a way to fix the issue, and re-run
the loop to include the discarded CVEs.

TMP

REJECTED

NON-EXISTENT

The CVE number had been allocated but was not approved for various
reasons (duplicate, not a real vulnerability, etc.). Example: CVE-2012-2701

The CVE “number” appears in a dump but does not point to a really-existing
CVE due to the invalid format. Examples: CVE20163325, CVE-2012-087

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

The idea is to catch the exception and skip that iteration. At the same
time, we temporarily store the problematic CVEs in a dedicated file,
with the associated exception message as well.

TMP

The idea is to solve as many issues as possible. When not possible, we
permanently store the problematic CVEs in another dedicated file, with
the associated exception message as well.

BAD

5
Thou shalt not keep
your secrets

Keep track of everything, especially the
data that you discard. Do it
for transparency—and so, the study's
credibility—and for your future self!

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Our set of collected CVEs may need some further refinement. Previously, we
just checked whether a CVE was “sufficiently valid” to be involved in the
study, but there are some other quality checks that we should put in place.
We initiate the data preparation phase.

Cell “Data Preparation”

Data preparation is not a transaction. We make an
initial preparation to arrange the data in an
exportable format. Then, we further prepare the
data to extract the dataset for training and testing.

Thou shalt apply all
pre-processing at once

6

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Our set of collected CVEs may need some further refinement. Previously, we
just checked whether a CVE was “sufficiently valid” to be involved in the
study, but there are some other quality checks that we should put in place.
We initiate the data preparation phase.

Cell “Data Preparation”

Standardize Formats

Drop Out-of-scope

Fix/Impute Data

Drop Invalid

Explore Data

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Our set of collected CVEs may need some further refinement. Previously, we
just checked whether a CVE was “sufficiently valid” to be involved in the
study, but there are some other quality checks that we should put in place.
We initiate the data preparation phase.

Standardize Formats

Drop Out-of-scope

Fix/Impute Data

Drop Invalid

Explore Data It’s essential to profile our data with sufficient effort to understand
their nature and decide how to handle them. Investing no time in
doing this will cost you a lot. Here is another commandment:

Thou shalt not put your
faith in the collected data

7

The data collected are not exempt from errors—e.g., the
CVSS Base Score could be 100 due to an extra zero
typed. Ensure the data have the values you expect.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Our set of collected CVEs may need some further refinement. Previously, we
just checked whether a CVE was “sufficiently valid” to be involved in the
study, but there are some other quality checks that we should put in place.
We initiate the data preparation phase.

Standardize Formats

Explore Data

Drop Out-of-scope

Fix/Impute Data

Drop Invalid

Sometimes we want to convert the data into a more suitable/
readable format. For example, if the dates report the time zone, we
can convert them into the yyyy-mm-dd format as we do not need it.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Our set of collected CVEs may need some further refinement. Previously, we
just checked whether a CVE was “sufficiently valid” to be involved in the
study, but there are some other quality checks that we should put in place.
We initiate the data preparation phase.

Drop Out-of-scope

Fix/Impute Data

Explore Data

Standardize Formats

Standardized formats are easier to inspect, so we can quickly
identify data outside our scope, e.g., CVEs published after
2021-01-01.

Drop Invalid

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Our set of collected CVEs may need some further refinement. Previously, we
just checked whether a CVE was “sufficiently valid” to be involved in the
study, but there are some other quality checks that we should put in place.
We initiate the data preparation phase.

Drop Invalid

Explore Data

Standardize Formats

Whenever possible, we should identify possible errors in data and
try to fix them. The most common case is missing data. There are
cases in which null can be safely intended as 0. Other times, null
really means “missing information”. If that information is too-critical,
we might think of discarding those CVEs.Drop Out-of-scope

Fix/Impute Data

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Our set of collected CVEs may need some further refinement. Previously, we
just checked whether a CVE was “sufficiently valid” to be involved in the
study, but there are some other quality checks that we should put in place.
We initiate the data preparation phase.

Explore Data

Standardize Formats

Drop Out-of-scope

Drop Invalid

Fix/Impute Data

After all these steps, we might discover CVEs having “weird data”.
As seen in the example before, there might be CVEs with a CVSS
Base Score equal to 100. We cannot safely say that the intended
number was 10, so it is safer to drop that CVE. It’s better to have
less noise than to have lots of data.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Our set of collected CVEs may need some further refinement. Previously, we
just checked whether a CVE was “sufficiently valid” to be involved in the
study, but there are some other quality checks that we should put in place.
We initiate the data preparation phase.

Standardize Formats

Drop Out-of-scope

Drop Invalid

Fix/Impute Data

Yet, even after cleaning, we could still have forgotten something, i.e., letting erroneous
data circumvent the filters or discarding valid data. Are we really sure we have
implemented everything correctly? We are software engineers, so we should test at
least our final results.

Thou shalt not put your
faith in the processed data

8

We should do post-condition verification: read the
files with the prepared data and ensure all the steps
had the intended effect.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Now, we can go for the second part of the data preparation: preparing them in a
suitable format for the ML models.

Cell “Dataset Setup”

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row
represents the observation (CVE, commit, etc.), depending on the granularity of our
task. The columns are dedicated to (1) the ground truth labels and (2) the features.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

The first step is to decide what goes into the rows! We have to combine all the various
files we obtained in the previous phase and express any data at the targeted level. For
example, if the target are commits, then each row should represent a commit!

Now, we can go for the second part of the data preparation: preparing them in a
suitable format for the ML models.

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row
represents the observation (CVE, commit, etc.), depending on the granularity of our
task. The columns are dedicated to (1) the ground truth labels and (2) the features.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Select the data to be directly used as features or run algorithms to compute additional
metrics that could not be mined directly.

Now, we can go for the second part of the data preparation: preparing them in a
suitable format for the ML models.

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

Try to involve as many features as possible.
Consider reasonable metrics only, i.e., those
that (might) have some correlation with the
label. Avoid shortcut features.

9
Thou shalt not be shy
on the feature set

ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row
represents the observation (CVE, commit, etc.), depending on the granularity of our
task. The columns are dedicated to (1) the ground truth labels and (2) the features.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

10
Remember the ground
truth, to keep it reliable

Select the data and/or run algorithms to assign labels. If this cannot be done, rely on
(semi-)manual approaches.

Now, we can go for the second part of the data preparation: preparing them in a
suitable format for the ML models.

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

Never underestimate the importance of a
good, sound, and reliable ground truth. The
models’ performance is highly influenced
by this choice.

ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row
represents the observation (CVE, commit, etc.), depending on the granularity of our
task. The columns are dedicated to (1) the ground truth labels and (2) the features.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

When running empirical studies, we should consider using validation schemes, e.g.,
random or time-aware cross-validations. Since we are preparing the data for the
learners, we can already prepare all the N pairs of training and test sets in this phase.

Depending on the degree of realism of our validation, we might need to re-assign
the labels and/or extract some features. Within a validation round, we are not
supposed to look at the data of other rounds!

Now, we can go for the second part of the data preparation: preparing them in a
suitable format for the ML models.
ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row
represents the observation (CVE, commit, etc.), depending on the granularity of our
task. The columns are dedicated to (1) the ground truth labels and (2) the features.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Indices
5
83

120
253

Training

Round #1

1245
2210

Indices
15
110

2145

Test

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

Let’s suppose Feature #2 is
computed depending on the value of
Feature #1 of ALL observations.

f2(x) = f1(x)
∑x f1(x)

The pre-computed Feature #2 column
is invalid! We have to re-compute it
again on the training set!

Let’s suppose we use a traditional
random 10-fold cross-validation. We
need to create 10 training sets and 10
test sets.

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Indices
5
83

120
253

Training

Round #1

1245
2210

Indices
15
110

2145

Test

Let’s suppose Feature #2 is
computed depending on the value of
Feature #1 of ALL observations.

f2(x) = f1(x)
∑x f1(x)

Feature #1 Feature #2

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

1
2
3
4
3
2

0.67
0.13
0.20
0.27
0.20
0.13

∑
x

f1(x) = 15

Let’s suppose we use a traditional
random 10-fold cross-validation. We
need to create 10 training sets and 10
test sets.

The pre-computed Feature #2 column
is invalid! We have to re-compute it
again on the training set!

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Indices
5
83

120
253

Training

Round #1

1245
2210

Indices
15
110

2145

Test

Let’s suppose Feature #2 is
computed depending on the value of
Feature #1 of ALL observations.

f2(x) = f1(x)
∑x f1(x)

Feature #1 Feature #2

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

1
2
3
4
3
2

0.67
0.13
0.20
0.27
0.20
0.13

∑
x

f1(x) = 15

We store this sum to compute each
test instance's Feature #2 value. The
test instances NEVER LOOK at other
test instances!

Let’s suppose we use a traditional
random 10-fold cross-validation. We
need to create 10 training sets and 10
test sets.

The pre-computed Feature #2 column
is invalid! We have to re-compute it
again on the training set!

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability
Prediction: The Practical Perspective

Indices
5
83

120
253

Training

Round #1

1245
2210

Indices
15
110

2145

Test

Let’s suppose Feature #2 is
computed depending on the value of
Feature #1 of ALL observations.

f2(x) = f1(x)
∑x f1(x)

Feature #1 Feature #2

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

1
2
3
4
3
2

0.67
0.13
0.20
0.27
0.20
0.13

∑
x

f1(x) = 15

We store this sum to compute each
test instance's Feature #2 value. The
test instances NEVER LOOK at other
test instances!

Feature #1 Feature #2
1
1
2

0.67
0.67
0.13

Let’s suppose we use a traditional
random 10-fold cross-validation. We
need to create 10 training sets and 10
test sets.

The pre-computed Feature #2 column
is invalid! We have to re-compute it
again on the training set!

Mining Software Repositories for Vulnerability Prediction:
Lessons Learned, Challenges, and Recommendations
Emanuele Iannone  
Ph.D. Student
Software Engineering (SeSa) Lab
University of Salerno

eiannone@unisa.it 
@EmanueleIannone3 

https://emaiannone.github.io

mailto:eiannone@unisa.it
https://emaiannone.github.io

