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Mining Software Repositories for Vulnerability Prediction: 
Lessons Learned, Challenges, and Recommendations

Fundamentals of Mining Software Repositories for Vulnerability Prediction: 
The Methodological Perspective

Next on this lecture

Fundamentals of Mining Software Repositories for Vulnerability Prediction: 
The Practical Perspective

(1) What kind of data do we have to collect?
(2) How do we query the data sources?
(3) How can we make mining smart and efficient?
(4) How do we process the collected data?
(5) How do we prepare the data for the prediction models?

(1) How does a general predictive task work?
(2) How can MSR support vulnerability prediction?
(3) Which data processing activities are required for predictive tasks? 
(4) What are the pitfalls when developing a vulnerability prediction model?
(5) What are the current limitations and challenges you are called to face?
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Predicting vulnerabilities needs… 
machine learning
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But machine learning needs…

lots of data… 

possibly of high quality
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

But high quality data needs…

reliable data sources… 

and time!
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Mining data IS time-consuming! We must be smart 
and efficient to minimize the times we go back to 
our steps and re-do everything.

To minimize such a risk, it is good to ask ourselves:

Answering these questions helps to avoid collecting:

Too much data 
(pointless workload)

Too few data 
(no good models)

What kind of predictions do I want to make?

How do I plan to use the collected data?
What do I want to achieve?
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Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file 
in a specific project is vulnerable.
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Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Build a VPM that determines whether a C file 
in a specific project is vulnerable.

The object of the classification is files written in C: the ML models 
will train on a set of C files and make their predictions on C files. 

We have to mine data associated with C files; the more, the better.

Let’s be a bit more practical with an example…
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Build a VPM that determines whether a C file 
in a specific project is vulnerable.

We can collect historical data regarding that specific project, go for 
synthetic C files (transfer learning), or even a mixture. This is 

a methodological decision that must be taken seriously.

Let’s be a bit more practical with an example…
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Build a VPM that determines whether a C file 
in a specific project is vulnerable.

We need information that helps a classifier recognize the 
differences between a vulnerable C file and a “safe” C file. In other words, 

we need the data that will be used to encode/extract the features.

Let’s be a bit more practical with an example…
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Let’s assume we find a dataset 
with records of past vulnerable C 
files observed in a project.

int main() { 
  doStuff(); 
  doSth(); 
  return 0;  
}

Author: Emanuele 
Date: 01-09-1996 
Bytes: 20,000

Candidate Features

Any data that could be used to extract/encode features should be 
collected. We can store the “high-level” data to save storage space, 

and only later can we run the algorithms to extract the features.

Lines of Code
# Functions

Tokens Stream
# System Calls

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file 
in a specific project is vulnerable.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Let’s assume we find a dataset 
with records of past vulnerable C 
files observed in a project.

int main() { 
  doStuff(); 
  doSth(); 
  return 0;  
}

Author: Emanuele 
Date: 01-09-1996 
Bytes: 20,000

Candidate Features

Let’s be a bit more practical with an example…

Source Code

Build a VPM that determines whether a C file 
in a specific project is vulnerable.

Any data that could be used to extract/encode features should be 
collected. We can store the “high-level” data to save storage space, 

and only later can we run the algorithms to extract the features.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Let’s assume we find a dataset 
with records of past vulnerable C 
files observed in a project.

int main() { 
  doStuff(); 
  doSth(); 
  return 0;  
}

Author: Emanuele 
Date: 01-09-1996 
Bytes: 20,000 Metadata is not necessarily useful as features. The author's name does not 

make sense and could be harmful: it might give the classifiers a “shortcut” 
to make distorted predictions (exploiting spurious correlations).

Source Code

Author’s name

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file 
in a specific project is vulnerable.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Let’s assume we find a dataset 
with records of past vulnerable C 
files observed in a project.

int main() { 
  doStuff(); 
  doSth(); 
  return 0;  
}

Author: Emanuele 
Date: 01-09-1996 
Bytes: 20,000

Features are not the only reason 
why we mine data. There are 
other purposes for which we 
can use the mined data.Source Code

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file 
in a specific project is vulnerable.

Author’s name
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Let’s assume we find a dataset 
with records of past vulnerable C 
files observed in a project.

int main() { 
  doStuff(); 
  doSth(); 
  return 0;  
}

Author: Emanuele 
Date: 01-09-1996 
Bytes: 20,000

Data Selection

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file 
in a specific project is vulnerable.

Source code (again). It can be used to filter out 
additional files. For instance, we could drop empty 
files, not parsable files, or files with no functions.

It’s not rare that we re-use the same “high-level” data for 
multiple purposes, i.e., data selection and features. 

Creation Date. It can be used to filter out specific files. 
For instance, we could drop outdated files, as we think 
they are not reliable enough for today’s predictions.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Let’s assume we find a dataset 
with records of past vulnerable C 
files observed in a project.

int main() { 
  doStuff(); 
  doSth(); 
  return 0;  
}

Author: Emanuele 
Date: 01-09-1996 
Bytes: 20,000

Label Assignment

But wait, there is more!

Let’s be a bit more practical with an example…

Build a VPM that determines whether a C file 
in a specific project is vulnerable.

Source code (again). It can be inspected with a static 
vulnerability analyzer to obtain the Nr. warnings. This 
metric can be used to set our ground truth.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

To sum up, we mine data for three main reasons:

Candidate Features

Data Selection

Label Assignment

Data intended to be used for extracting features, either manually 
or automatically.

Data intended to support the selection of valid instances, i.e., 
those that will be seen by the models.

Data intended to support the process of determining the labels 
to assign to each instance.

LOC, #Functions, #System Calls, Token Stream, Past Faults, Nr. maintainers

Creation Date, Size, Vulnerability Type/CWE

Analysis tool’s report, Vulnerability Insertion Date, Vulnerability Type/CWE
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

To sum up, we mine data for three main reasons:

Candidate Features

Data Selection

Label Assignment

In this respect, I want to introduce the first of my personal 10 
commandments, i.e., 10 lessons I learned while working on 
mining data for vulnerability prediction.

1
Thou shalt not be too eager to 

terminate the mining

There will always be some data that you forgot to collect, and 
you’ll regret it. Take your time, and think!

When in doubt, collect all data available if 
it does not cost you too much. If you have 
no time, do it later… think incrementally!
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Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on 
many factors, we might have to query multiple sources.
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Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on 
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real 
deal now is to find an “entry point”: an interface allowing the retrieval of the 
stored data.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on 
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real 
deal now is to find an “entry point”: an interface allowing the retrieval of the 
stored data.

NVD website offers many mechanisms to 
recover its data. This “CVE and CPE APIs” 
seems interesting. Let’s navigate this link.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on 
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real 
deal now is to find an “entry point”: an interface allowing the retrieval of the 
stored data.

We are interested in CVEs, 
not in CPEs.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on 
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real 
deal now is to find an “entry point”: an interface allowing the retrieval of the 
stored data.

Here we discover that with a 
single HTTP GET request, we can 
retrieve the info of a given CVE.

The example provided (https://services.nvd.nist.gov/rest/json/cve/1.0/CVE-2021-41172) returns a JSON 
with the data of the requested CVE.

However, we first need the full list of CVEs… otherwise, we won’t know which CVE to request.

{"resultsPerPage":1,"startIndex":0,"totalResults":1,"result":
{"CVE_data_type":"CVE","CVE_data_format":"MITRE","CVE_data_version":"4.0","CVE_data_timestamp":"2022-09-01T1
0:12Z","CVE_Items":[{"cve":{"data_type":"CVE","data_format":"MITRE","data_version":"4.0","CVE_data_meta":
{"ID":"CVE-2021-41172","ASSIGNER":"security-advisories@github.com"},"problemtype":{"problemtype_data":
[{"description":[{"lang":"en","value":"CWE-79"}]}]},"references":{"reference_data":[{"url":"https://
github.com/AntSword-Store/AS_Redis/issues/1","name":"https://github.com/AntSword-Store/AS_Redis/issues/
1","refsource":"MISC","tags":["Exploit","Issue Tracking","Third Party Advisory"]},{"url":"https://
github.com/Medicean/AS_Redis/security/advisories/GHSA-j8j6-f829-w425","name":"https://github.com/Medicean/
AS_Redis/security/advisories/GHSA-j8j6-f829-w425","refsource":"CONFIRM","tags":["Third Party Advisory”]},
{"url":"https://mp.weixin.qq.com/s/yjuG6DLT_bSRnpggPj21Xw","name":"https://mp.weixin.qq.com/s/
yjuG6DLT_bSRnpggPj21Xw","refsource":"MISC"
[...]

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://services.nvd.nist.gov/rest/json/cve/1.0/CVE-2021-41172
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Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on 
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real 
deal now is to find an “entry point”: an interface allowing the retrieval of the 
stored data.

Fortunately, we can collect 
multiple CVEs at once… right?

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Fabio showed us many possible data sources: NVD, CVE, GitHub, etc. Depending on 
many factors, we might have to query multiple sources.

Reliable data sources often come with public web APIs, allowing the retrieval of data—
in JSON format—with simple HTTP requests. Whenever they exist, it’s a good sign.

Let’s go check the dedicated page on the NVD website: https://nvd.nist.gov/
vuln/data-feeds

Let’s assume we opt for NVD and want to collect ALL existing CVEs! The real 
deal now is to find an “entry point”: an interface allowing the retrieval of the 
stored data.

Fortunately, we can collect 
multiple CVEs at once… right?

Let’s try this one: https://services.nvd.nist.gov/rest/json/cves/1.0/
{“resultsPerPage":20,"startIndex":0,"totalResults":183571,"result":
{"CVE_data_type":"CVE","CVE_data_format":"MITRE","CVE_data_version":"4.0","CVE_data_timestamp":"2022-09-01T10:35Z
","CVE_Items":[{"cve":{"data_type":"CVE","data_format":"MITRE","data_version":"4.0","CVE_data_meta":
{"ID":"CVE-2022-3072","ASSIGNER":"security@huntr.dev"},"problemtype":{"problemtype_data":[{"description":
[{"lang":"en","value":"CWE-79"}]}]},"references":{"reference_data":[{"url":"https://huntr.dev/bounties/9755ae6a-
b08b-40a0-8089-c723b2d9ca52","name":"https://huntr.dev/bounties/9755ae6a-b08b-40a0-8089-
c723b2d9ca52","refsource":"CONFIRM","tags":[]},
[…]

This should be fine, but it seems we just obtained… 20 CVEs?! How is that possible? Many public APIs have two 
main limitations: pagination, which limits the amount of data per response, and rate limits, which prevent making 
too many requests in a short period, especially without an API token (to request).

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://services.nvd.nist.gov/rest/json/cves/1.0/
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If these limitations are too tight, we must look for something different. Let’s make a 
quick Google search: “cve api”.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

We discover CVE Search, a tool that automatically 
imports CVEs into MongoDB. CVE Search also 
exposes public web API operated by Computer 
Incident Response Center Luxembourg (CIRCL) 
initiative. Let’s take a look.

If these limitations are too tight, we must look for something different. Let’s make a 
quick Google search: “cve api”.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

We can get the list of all the vendors…

…the list of their products…

…and the CVEs of each product.

But even in this case, we might need 
several requests for the complete list 
of CVEs. Apparently, there are no 
particular limitations…

If these limitations are too tight, we must look for something different. Let’s make a 
quick Google search: “cve api”.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Requests project on PyPI: https://pypi.org/project/requests 

Querying an API is not that difficult. We can opt for:

def call_api(url, try_num=1, max_try=None): 
  try: 
    headers = {'Accept': 'application/json'} 
    return requests.get(url, headers=headers).json() 
  except: 
    time.sleep(2**try_num + random() * 0.01) 
    if max_try and try_num < max_try: 
      return call_api(url, try_num=try_num+1) 
    else: 
      return None

Command-line tools. For example, wget.

Dedicated libraries. For example, Python’s requests.

wget https://cve.circl.lu/api/cve/cve-2020-1234

https://pypi.org/project/requests/
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

def call_api(url, try_num=1, max_try=None): 
  try: 
    headers = {'Accept': 'application/json'} 
    return requests.get(url, headers=headers).json() 
  except: 
    time.sleep(2**try_num + random() * 0.01) 
    if max_try and try_num < max_try: 
      return call_api(url, try_num=try_num+1) 
    else: 
      return None

wget https://cve.circl.lu/api/cve/cve-2020-1234

To recap, when does public web API worth it?

When we just need a sample of the full content. For instance, we are 
only interested in collecting the CVEs published since 2019 or those with 
CVSS Base Score = 10. Not suitable for large-scale mining.

When there are no limits! This is undoubtedly the best-case scenario, 
but it is not quite common as you would expect… or there might be a 
catch, e.g., poor-quality data are returned.

When we just need to enrich a set of known data. For instance, we 
already own some CVEs and want to add more data using the “single 
CVE” endpoint.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

If we closely inspect both the NVD and CVE Search websites, we discover the 
existence of dumps (called data feeds), i.e., JSON files containing a subset of the full 
content of the databases.

JSON format

Extended dump 
(daily, per year)

JSON format

“Recent” dump

(2-hourly)

Partial dumps 
(daily, CVEs and references)

Extended dump

(daily, full)

I tend to use this one, as it’s “just” less than 
200MB. I integrate the missing data with 
API calls or other methods (e.g., scraping).

Constantly monitor their websites as things 
can change through time. For example, by 
the end of 2023, NVD will only offer APIs.

APIs are cool, but they are not the only entry point to data sources…



Mining Software Repositories for Vulnerability Prediction: 
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

We read the file and get the JSON 
of all CVEs, which becomes a 
dictionary in Python.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

We loop through CVEs and query 
additional data using CVE Search API.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

We update the in-memory data structure.
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How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

We periodically save the processed data 
into our storage.
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Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

In this respect, the way we organize our storage is critical. We should decide 
the format and the mechanism to store the processed data efficiently.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

We periodically save the processed data 
into our storage.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

In this respect, the way we organize our storage is critical. We should decide 
the format and the mechanism to store the processed data efficiently.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

SQL DB

JSON

CSV

Perfect with deeply nested 
data, less straightforward to 
set up, no diff.

Straightforward and memory 
efficient, good diff, can’t 
handle nested data.

Human-readable, handles 
nested data, nice diff, memory 
inefficient (can be compacted).
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Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

Choose whichever you think is the 
best, depending on your needs. 
The important is to…

2
Honour thy storage

Store in different files, 
each with a chunk of M 
data elements (CVEs), to 
reduce the writing time.

In this respect, the way we organize our storage is critical. We should decide 
the format and the mechanism to store the processed data efficiently.
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How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

Choose whichever you think is the 
best, depending on your needs, 
the important is to…

2
Honour thy storage

def store_chunk(items, filepath, num_chunk, lower, upper=None): 
  chunk = {k: v for (k, v) in items[lower:upper]} 
  num_chunk_str = "0" + str(num_chunk) if num_chunk < 10 else str(num_chunk) 
  dest_file = join(dirname(filepath), num_chunk_str + "_" + basename(filepath)) 
  with open(dest_file, "w") as json_file: 
    json.dump(chunk, json_file, indent=2) 

def store_cves(data, filepath, chunk_size=5000, rewrite_past_chunks=False): 
  items = [(k, v) for k, v in data.items()] 
  selected = 0 
  num_chunk = 0 
  while len(items) - selected > chunk_size: 
    upper = selected + chunk_size 
    if rewrite_past_chunks: 
      store_chunk(items, filepath, num_chunk, selected, upper) 
    selected = upper 
    num_chunk += 1 
  if len(items) - selected > 0: 
    store_chunk(items, filepath, num_chunk, selected)

In this respect, the way we organize our storage is critical. We should decide 
the format and the mechanism to store the processed data efficiently.
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How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

Choose whichever you think is the 
best, depending on your needs, 
the important is to…

2
Honour thy storage

def store_chunk(items, filepath, num_chunk, lower, upper=None): 
  chunk = {k: v for (k, v) in items[lower:upper]} 
  num_chunk_str = "0" + str(num_chunk) if num_chunk < 10 else str(num_chunk) 
  dest_file = join(dirname(filepath), num_chunk_str + "_" + basename(filepath)) 
  with open(dest_file, "w") as json_file: 
    json.dump(chunk, json_file, indent=2) 

def store_cves(data, filepath, chunk_size=5000, rewrite_past_chunks=False): 
  items = [(k, v) for k, v in data.items()] 
  selected = 0 
  num_chunk = 0 
  while len(items) - selected > chunk_size: 
    upper = selected + chunk_size 
    if rewrite_past_chunks: 
      store_chunk(items, filepath, num_chunk, selected, upper) 
    selected = upper 
    num_chunk += 1 
  if len(items) - selected > 0: 
    store_chunk(items, filepath, num_chunk, selected)

Basically, each 5000 CVEs, a new file is 
stored and the writings happen on that file, 
untile reaching 5000 CVEs, and so on…

In this respect, the way we organize our storage is critical. We should decide 
the format and the mechanism to store the processed data efficiently.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

How to collect data from dumps and APIs? The first step is to load the dump into an 
iterable data structure (using any programming language), then loop through each 
element. During the loop, we can query missing data using the web API.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

The mining heavily relies on this 
loop. We should put in place some 
other good practices.

3
Thou shalt not take 
hostage your machine

Mining can take several 
days/weeks. Put in place 
several actions to improve 
your mining scripts.
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Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

[Tip #1] Monitor the loop progress. 
Don’t make a guess, but monitor the 
loop status using a progress bar. 
Other than using the terminal, you 
can also print the progress onto a 
file—good when running the script 
on a server.

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in raw_cves: 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)
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endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in tqdm(raw_cves): 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

80%|██████████    | 160/200 [02:00<08:00, 1.3it/s]

If each element takes about the 
same time, we have a good estimate 
of the duration of the loop.

TQDM project on PyPI: https://pypi.org/project/tqdm/

I recommend the TQDM library, 
which implements a good-looking 
progress bar by just wrapping the 
iterable structure in a  function.

[Tip #1] Monitor the loop progress. 
Don’t make a guess, but monitor the 
loop status using a progress bar. 
Other than using the terminal, you 
can also print the progress onto a 
file—good when running the script 
on a server.

https://pypi.org/project/tqdm/
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endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for cve in tqdm(raw_cves): 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  store_cves(cves, cves_file)

[Tip #2] Save intermediate 
results. Storing all the processed 
data at the end of the loop is not a 
smart move— things can go wrong 
(power outage, accidental SIGKILL), 
and we have to start over. However, 
doing it at every iteration can be 
costly. Hence, storing data every K 
iterations is a good balance 
between speed and safety.
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Prediction: The Practical Perspective

endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for idx, cve in enumerate(tqdm(raw_cves)): 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  if idx + 1 == len(raw_cves) or \ 
     len(cves) % 100 == 0: 
    store_cves(cves, cves_file)

We need the iteration index.

We write into storage at the last iteration or 
once every 100 CVEs successfully processed.

[Tip #2] Save intermediate 
results. Storing all the processed 
data at the end of the loop is not a 
smart move— things can go wrong 
(power outage, accidental SIGKILL), 
and we have to start over. However, 
doing it at every iteration can be 
costly. Hence, storing data every K 
iterations is a good balance 
between speed and safety.
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endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = {} 
for idx, cve in enumerate(tqdm(raw_cves)): 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  if idx + 1 == len(raw_cves) or \ 
     len(cves) % 100 == 0: 
    store_cves(cves, cves_file)

[Tip #3] Restart from the 
intermediate results. The 
intermediate results are not only 
meant for back-ups but can be 
used to find the point where to 
start again after an interruption. 
Basically, we read the file of 
processed CVEs and avoid re-
processing them.
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endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = read_cves(cves_file) 
for idx, cve in enumerate(tqdm(raw_cves)): 
  if cve in cves: 
    continue 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  if idx + 1 == len(raw_cves) or \ 
     len(cves) % 100 == 0: 
    store_cves(cves, cves_file)

We initialize by reading any file 
containing processed CVEs.

If a CVE has already been 
processed, skip it.

def read_cves(filepath): 
  dn = dirname(filepath) 
  bn = basename(filepath) 
  data = {} 
  for f in sorted(listdir(dn)): 
    path = join(dn, f) 
    if exists(path) and getsize(path): 
      with open(path, "r") as in_file: 
        data.update(json.load(in_file)) 
  return data

[Tip #3] Restart from the 
intermediate results. The 
intermediate results are not only 
meant for back-ups but can be 
used to find the point where to 
start again after an interruption. 
Basically, we read the file of 
processed CVEs and avoid re-
processing them.
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endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = read_cves(cves_file) 
for idx, cve in enumerate(tqdm(raw_cves)): 
  if cve in cves: 
    continue 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  if idx + 1 == len(raw_cves) or \ 
     len(cves) % 100 == 0: 
    store_cves(cves, cves_file)

[Tip #4] Enable graceful 
interruption. Sometimes we have 
to interrupt the script manually. 
However, interrupting during a file 
writing has the risk of corrupting its 
content: we lose our progress. 
Hence, we can intercept the 
CTRL+C (SIGINT), set a flag to true, 
and stop the loop in a safe state 
(e.g., between iterations) to avoid 
damage.
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endpoint = "https://cve.circl.lu/api/cve" 
dump_content = {} 
with open("path/to/dump.json", "r") as in_file: 
  dump_content = json.loads(in_file.read()) 
raw_cves = dump_content["cves"] 
cves_file = "path/to/cves.json" 
cves = read_cves(cves_file) 
stop_signal = False 
signal.signal(signal.SIGINT, signal_handler) 
for idx, cve in enumerate(tqdm(raw_cves)): 
  if stop_signal: 
    break 
  if cve in cves: 
    continue 
  resp = call_api(join(endpoint, cve)) 
  # Addition mining goes here 
  cves[cve] = { 
    "cwe": resp["cwe"], 
    "cvss": resp["cvss"] 
  } 
  if idx + 1 == len(raw_cves) or \ 
     len(cves) % 100 == 0: 
    store_cves(cves, cves_file)

We can use a custom handler 
triggered when a SIGINT is received.

The handler just sets a global variable to 
true, queried at the start of each iteration.

def signal_handler(sig, frame): 
  global stop_signal 
  print('Going to gracefully stop') 
  stop_signal = True

[Tip #4] Enable graceful 
interruption. Sometimes we have 
to interrupt the script manually. 
However, interrupting during a file 
writing has the risk of corrupting its 
content: we lose our progress. 
Hence, we can intercept the 
CTRL+C (SIGINT), set a flag to true, 
and stop the loop in a safe state 
(e.g., between iterations) to avoid 
damage.
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It is known that things never go as expected. It happens continuously: we run our 
fantastic mining script before ending the work day. We go back home, arrange 
something with our friends, eat or drink something, and then go to sleep.
The next day at the office we discovered something terrible: the script crashed 10 
minutes after we closed our office’s door! 
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4
Thou shalt not ignore 
corner cases

Make your script resistant to unforeseen 
events. We could wrap all the loop logic 
inside a great try-catch block that captures 
any unexpected exception.

It is time to introduce another commandment:

The idea is to catch the exception and skip that iteration. At the same 
time, we temporarily store the problematic CVEs in a dedicated file, 
with the associated exception message as well.

Later, we can inspect this file, try to figure out a way to fix the issue, and re-run 
the loop to include the discarded CVEs.

TMP
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Yet, there might be cases when we can’t fix the CVE, e.g., some critical data are 
entirely missing or too malformed to be fixed.

The idea is to solve as many issues as possible. When not possible, we 
permanently store the problematic CVEs in another dedicated file, with 
the associated exception message as well.

BAD

The idea is to catch the exception and skip that iteration. At the same 
time, we temporarily store the problematic CVEs in a dedicated file, 
with the associated exception message as well.

Later, we can inspect this file, try to figure out a way to fix the issue, and re-run 
the loop to include the discarded CVEs.

TMP

REJECTED

NON-EXISTENT

The CVE number had been allocated but was not approved for various 
reasons (duplicate, not a real vulnerability, etc.). Example: CVE-2012-2701

The CVE “number” appears in a dump but does not point to a really-existing 
CVE due to the invalid format. Examples: CVE20163325, CVE-2012-087
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The idea is to catch the exception and skip that iteration. At the same 
time, we temporarily store the problematic CVEs in a dedicated file, 
with the associated exception message as well.

TMP

The idea is to solve as many issues as possible. When not possible, we 
permanently store the problematic CVEs in another dedicated file, with 
the associated exception message as well.

BAD

5
Thou shalt not keep 
your secrets

Keep track of everything, especially the 
data that you discard. Do it 
for transparency—and so, the study's 
credibility—and for your future self!
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Our set of collected CVEs may need some further refinement. Previously, we 
just checked whether a CVE was “sufficiently valid” to be involved in the 
study, but there are some other quality checks that we should put in place. 
We initiate the data preparation phase.

Cell “Data Preparation”

Data preparation is not a transaction. We make an 
initial preparation to arrange the data in an 
exportable format. Then, we further prepare the 
data to extract the dataset for training and testing. 

Thou shalt apply all 
pre-processing at once

6
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Our set of collected CVEs may need some further refinement. Previously, we 
just checked whether a CVE was “sufficiently valid” to be involved in the 
study, but there are some other quality checks that we should put in place. 
We initiate the data preparation phase.

Cell “Data Preparation”

Standardize Formats

Drop Out-of-scope

Fix/Impute Data

Drop Invalid

Explore Data
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Our set of collected CVEs may need some further refinement. Previously, we 
just checked whether a CVE was “sufficiently valid” to be involved in the 
study, but there are some other quality checks that we should put in place. 
We initiate the data preparation phase.

Standardize Formats

Drop Out-of-scope

Fix/Impute Data

Drop Invalid

Explore Data It’s essential to profile our data with sufficient effort to understand 
their nature and decide how to handle them. Investing no time in 
doing this will cost you a lot. Here is another commandment:

Thou shalt not put your 
faith in the collected data

7

The data collected are not exempt from errors—e.g., the 
CVSS Base Score could be 100 due to an extra zero 
typed. Ensure the data have the values you expect.
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Our set of collected CVEs may need some further refinement. Previously, we 
just checked whether a CVE was “sufficiently valid” to be involved in the 
study, but there are some other quality checks that we should put in place. 
We initiate the data preparation phase.

Standardize Formats

Explore Data

Drop Out-of-scope

Fix/Impute Data

Drop Invalid

Sometimes we want to convert the data into a more suitable/
readable format. For example, if the dates report the time zone, we 
can convert them into the yyyy-mm-dd format as we do not need it.
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Our set of collected CVEs may need some further refinement. Previously, we 
just checked whether a CVE was “sufficiently valid” to be involved in the 
study, but there are some other quality checks that we should put in place. 
We initiate the data preparation phase.

Drop Out-of-scope

Fix/Impute Data

Explore Data

Standardize Formats

Standardized formats are easier to inspect, so we can quickly 
identify data outside our scope, e.g., CVEs published after 
2021-01-01.

Drop Invalid



Mining Software Repositories for Vulnerability Prediction: 
Lessons Learned, Challenges, and Recommendations

Next on this lecture Fundamentals of Mining Software Repositories for Vulnerability 
Prediction: The Practical Perspective

Our set of collected CVEs may need some further refinement. Previously, we 
just checked whether a CVE was “sufficiently valid” to be involved in the 
study, but there are some other quality checks that we should put in place. 
We initiate the data preparation phase.

Drop Invalid

Explore Data

Standardize Formats

Whenever possible, we should identify possible errors in data and 
try to fix them. The most common case is missing data. There are 
cases in which null can be safely intended as 0. Other times, null 
really means “missing information”. If that information is too-critical, 
we might think of discarding those CVEs.Drop Out-of-scope

Fix/Impute Data
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Our set of collected CVEs may need some further refinement. Previously, we 
just checked whether a CVE was “sufficiently valid” to be involved in the 
study, but there are some other quality checks that we should put in place. 
We initiate the data preparation phase.

Explore Data

Standardize Formats

Drop Out-of-scope

Drop Invalid

Fix/Impute Data

After all these steps, we might discover CVEs having “weird data”. 
As seen in the example before, there might be CVEs with a CVSS 
Base Score equal to 100. We cannot safely say that the intended 
number was 10, so it is safer to drop that CVE. It’s better to have 
less noise than to have lots of data. 
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Our set of collected CVEs may need some further refinement. Previously, we 
just checked whether a CVE was “sufficiently valid” to be involved in the 
study, but there are some other quality checks that we should put in place. 
We initiate the data preparation phase.

Standardize Formats

Drop Out-of-scope

Drop Invalid

Fix/Impute Data

Yet, even after cleaning, we could still have forgotten something, i.e., letting erroneous 
data circumvent the filters or discarding valid data. Are we really sure we have 
implemented everything correctly? We are software engineers, so we should test at 
least our final results.

Thou shalt not put your 
faith in the processed data

8

We should do post-condition verification: read the 
files with the prepared data and ensure all the steps 
had the intended effect.
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Now, we can go for the second part of the data preparation: preparing them in a 
suitable format for the ML models.

Cell “Dataset Setup”

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row 
represents the observation (CVE, commit, etc.), depending on the granularity of our 
task. The columns are dedicated to (1) the ground truth labels and (2) the features.
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The first step is to decide what goes into the rows! We have to combine all the various 
files we obtained in the previous phase and express any data at the targeted level. For 
example, if the target are commits, then each row should represent a commit!

Now, we can go for the second part of the data preparation: preparing them in a 
suitable format for the ML models.

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row 
represents the observation (CVE, commit, etc.), depending on the granularity of our 
task. The columns are dedicated to (1) the ground truth labels and (2) the features.
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Select the data to be directly used as features or run algorithms to compute additional 
metrics that could not be mined directly.

Now, we can go for the second part of the data preparation: preparing them in a 
suitable format for the ML models.

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

Try to involve as many features as possible. 
Consider reasonable metrics only, i.e., those 
that (might) have some correlation with the 
label. Avoid shortcut features.

9
Thou shalt not be shy 
on the feature set

ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row 
represents the observation (CVE, commit, etc.), depending on the granularity of our 
task. The columns are dedicated to (1) the ground truth labels and (2) the features.
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10
Remember the ground 
truth, to keep it reliable

Select the data and/or run algorithms to assign labels. If this cannot be done, rely on 
(semi-)manual approaches.

Now, we can go for the second part of the data preparation: preparing them in a 
suitable format for the ML models.

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

Never underestimate the importance of a 
good, sound, and reliable ground truth. The 
models’ performance is highly influenced 
by this choice.

ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row 
represents the observation (CVE, commit, etc.), depending on the granularity of our 
task. The columns are dedicated to (1) the ground truth labels and (2) the features.
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Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

When running empirical studies, we should consider using validation schemes, e.g., 
random or time-aware cross-validations. Since we are preparing the data for the 
learners, we can already prepare all the N pairs of training and test sets in this phase.

Depending on the degree of realism of our validation, we might need to re-assign 
the labels and/or extract some features. Within a validation round, we are not 
supposed to look at the data of other rounds!

Now, we can go for the second part of the data preparation: preparing them in a 
suitable format for the ML models.
ML models expect data in a tabular format (e.g., a pandas DataFrame). Each row 
represents the observation (CVE, commit, etc.), depending on the granularity of our 
task. The columns are dedicated to (1) the ground truth labels and (2) the features.
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Indices
5
83

120
253

Training

Round #1

1245
2210

Indices
15
110

2145

Test

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

Let’s suppose Feature #2 is 
computed depending on the value of 
Feature #1 of ALL observations.

f2(x) = f1(x)
∑x f1(x)

The pre-computed Feature #2 column 
is invalid! We have to re-compute it 
again on the training set!

Let’s suppose we use a traditional 
random 10-fold cross-validation. We 
need to create 10 training sets and 10 
test sets.
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Indices
5
83

120
253

Training

Round #1

1245
2210

Indices
15
110

2145

Test

Let’s suppose Feature #2 is 
computed depending on the value of 
Feature #1 of ALL observations.

f2(x) = f1(x)
∑x f1(x)

Feature #1 Feature #2

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

1
2
3
4
3
2

0.67
0.13
0.20
0.27
0.20
0.13

∑
x

f1(x) = 15

Let’s suppose we use a traditional 
random 10-fold cross-validation. We 
need to create 10 training sets and 10 
test sets.

The pre-computed Feature #2 column 
is invalid! We have to re-compute it 
again on the training set!
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Indices
5
83

120
253

Training

Round #1

1245
2210

Indices
15
110

2145

Test

Let’s suppose Feature #2 is 
computed depending on the value of 
Feature #1 of ALL observations.

f2(x) = f1(x)
∑x f1(x)

Feature #1 Feature #2

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

1
2
3
4
3
2

0.67
0.13
0.20
0.27
0.20
0.13

∑
x

f1(x) = 15

We store this sum to compute each 
test instance's Feature #2 value. The 
test instances NEVER LOOK at other 
test instances!

Let’s suppose we use a traditional 
random 10-fold cross-validation. We 
need to create 10 training sets and 10 
test sets.

The pre-computed Feature #2 column 
is invalid! We have to re-compute it 
again on the training set!
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Indices
5
83

120
253

Training

Round #1

1245
2210

Indices
15
110

2145

Test

Let’s suppose Feature #2 is 
computed depending on the value of 
Feature #1 of ALL observations.

f2(x) = f1(x)
∑x f1(x)

Feature #1 Feature #2

Feature #1
100

LabelIndices
0
1
…
N

…
200
…
50

Feature #2
0.1
0.05
…

0.025

Feature #k
1
2
…
10

…

1
2
3
4
3
2

0.67
0.13
0.20
0.27
0.20
0.13

∑
x

f1(x) = 15

We store this sum to compute each 
test instance's Feature #2 value. The 
test instances NEVER LOOK at other 
test instances!

Feature #1 Feature #2
1
1
2

0.67
0.67
0.13

Let’s suppose we use a traditional 
random 10-fold cross-validation. We 
need to create 10 training sets and 10 
test sets.

The pre-computed Feature #2 column 
is invalid! We have to re-compute it 
again on the training set!
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