Automatic Test Case Generation: Toward Its Application

in Exploit Generation for Known Vulnerabilities

Emanuele lannone
University of Salerno, Italy

Automatic Test Case Generation: loward Its Application
in EXploitiGeneration for Known Vulnerabilities

Emanuele lannone
University of Salerno, Italy

Automatic lest Case Generation: Toward Its Application

in Exploit Generation for Known Vulnerabilities

Emanuele lannone
University of Salerno, Italy

Software testing is expensive,
taking between 30-40% of total
project effort

Software testing is expensive,
taking between 30-40% of total
project effort

Exhaustive testing would be great:
checking ALL possible inputs to
maximize the found bugs

Software testing is expensive,
taking between 30-40% of total
project effort

There exists approximate but systematic approaches

There exists approximate but systematic approaches

void foo (int a, int b) {

1 if (a < 0)

2 System.out.println(“a is negative”);
3 if (b < 0)

4 System.out.println(“b is negative”);
5 return;

}

There exists approximate but systematic approaches

void foo (int a, int b) {

1 if (a < 0)

2 System.out.println(“a is negative”);
3 if (b < 0)

4 System.out.println(“b is negative”);
5 return;

}

Criterion

Statement
Coverage

There exists approximate but systematic approaches

void foo (int a, int b) {

1 if (a < 0)

2 System.out.println(“a is negative”);
3 if (b < 0)

4 System.out.println(“b is negative”);
5 return;

}

Criterion Goals

Statement {1, 2,3, 4, 5}
Coverage

There exists approximate but systematic approaches

void foo (int a, int b) {

1 if (a < 0)

2 System.out.println(“a is negative”);
3 if (b < 0)

4 System.out.println(“b is negative”);
5 return;

}

Criterion Goals

Statement {1, 2,3, 4, 5}
Coverage

There exists approximate but systematic approaches

void foo (int a, int b) {

1 if (a < 0)

2 System.out.println(“a is negative”);
3 if (b < 0)

4 System.out.println(“b is negative”);
5 return;

}

Criterion Goals TC

Path
Coverage

{<1,3,5>,
<1,2,3,5>,

<1,3,4,5>,
<1,2,3,4,5>}

There exists approximate but systematic approaches

void foo (int a, int b) {

1 if (a < 0)

2 System.out.println(“a is negative”);
3 if (b < 0)

4 System.out.println(“b is negative”);
5 return;

}

Criterion Goals

Branch {<1,2>, <1,3>,
Coverage <3,4>, <3,5>}

There exists approximate but systematic approaches

Unfortunately, this is tedious if done manually

There exists approximate but systematic approaches

Unfortunately, this is tedious if done manually

Fortunately, we have automated solutions

AUTOMATIC TEST
CASE GENERATION

AUTOMATIC TEST
- CASE GENERATION

= '&—, : ; :Q;Lf“’ =
o 73 <

,1(!».) R j.. £ H

- __ ¥

AUTOMATIC TEST

Reformulating the creation of test
cases as an Optimization Problem

21 (1

Generic procedures to define an
optimization algorithm able to quickly
explore the search space and provide
near-optimal solutions

«" mi

TN ST AUTOMATIC TEST

Reformulating the creation of test

cases as an Optlmlzatlon Problem f= ——— CASE GEN ERAT'ON

Generic procedures to define an
optimization algorithm able to quickly
explore the search space and provide

near—opt/mal solut/ons

GENETIC
ALGORITHMS

Ant Colony Simulated
Optimization Annealing

Tabu Search

GENETIC Inspired by the natural selection mechanisms,
evolves a set of candidate solutions to

ALGOR'TH MS optimize a g ivenfitnss funcion

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a given fithess function

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a ivenfitness function

19 Initial Population

y

3

1

@ Current population

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a ivenfitness function

9 Initial Population

y

3 -

y

Crossover

1

@ Current population

® New solutions (offsprlngs

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a given fitness function

fx)

3

1
@ Current population

® New solutions (offsprings)

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a given fithess function

v
Selection

y

Crossover

)
v

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a given fithess function

v
Selection

y

Crossover

)
v

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a given fithess function

v
Selection

y

Crossover

)
v

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a given fithess function

v
Selection

y

Crossover

)
v

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a given fithess function

v
Selection

y

Crossover

)
v

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a given fitness function

169 Initial Population

3

Selection

Crossover

Stopping condition based on search budget
or when convergence is reached

GEN ETIC Inspired by the natural se!ectlon me.chanlsms,
evolves a set of candidate solutions to

ALGOR'TH MS ptimize a given fitness function

fx)

_

3

1 2

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b c)
3 type "EQUILATERAL";
else
4 type = "ISOSCELES";
}
else if (a == ¢) {
type = "ISOSCELES";
} else {
if (b == c¢)
type = "ISOSCELES";
else
checkRightAngle();

}
System.out.println(type);

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 1 == . e .
2 lfh(ca(b =E)C§ St=Triangle(int,int,int):St.computeTriangleType() @
3 type = "EQUILATERAL"; 10,12, 5
else
4 type "ISOSCELES";
}
else if (a == ¢) {
type = "ISOSCELES";
} else { public void test(){
if (b == c) Triangle t = new Triangle(10,12,5);
type = "ISOSCELES"; t.computeTriangleType();
else }
checkRightAngle();

}
System.out.println(type);

Let's use a GA to generate tests for this method

“«““d9a;
void computeTriangleType() { Encod‘“
; lfh(ca(;:=t=))0§ St=Triangle(int,int,int):St.computeTriangleType() @

3 type = "EQUILATERAL"; 10,12,5
else
4 type = "ISOSCELES"; ‘@maﬁ
} Sti\'e"age
else if (a == c) { ¢
type = ISOSCELES™ f(x) = AL(P(x),t) + BD(P(x),t)

} else {
if (b == c¢)
type = "ISOSCELES";
else
checkRightAngle();

}
System.out.println(type);

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == ¢)
3 type = "EQUILATERAL";
else
4 type = "ISOSCELES";
}
else if (a == ¢) {
type = "ISOSCELES";
} else {
if (b == c¢)
type = "ISOSCELES";
else
checkRightAngle();
}
System.out.println(type); St=Triangle(int,int,int):St.computeTriangleType() @
2,22

Let's use a GA to generate tests for this method

void computeTriangleType() {

else
type = "ISOSCELES";
}
else if (a == ¢) {
type = "ISOSCELES";
} else {
if (b == c¢)
type = "ISOSCELES";
else
checkRightAngle();

St=Triangle(int,int,int):St.computeTriangleType() @
2,2,2

Let's use a GA to generate tests for this method

void computeTriangleType() {

else
type = "ISOSCELES";
}
else if (a == ¢) {
type = "ISOSCELES";
} else {
if (b == c¢)
type = "ISOSCELES";
else
checkRightAngle();

St=Triangle(int,int,int):St.computeTriangleType() @
2,2,2

Let's use a GA to generate tests for this method

void computeTriangleType() {

else
type = "ISOSCELES";
}
else if (a == ¢) {
type = "ISOSCELES";
} else {
if (b == c¢)
type = "ISOSCELES";
else
checkRightAngle();

St=Triangle(int,int,int):St.computeTriangleType() @
2,2,2

Let's use a GA to generate tests for this method

void computeTriangleType() {

"EQUILATERAL";

"ISOSCELES";

"ISOSCELES";

type = "ISOSCELES";
else

St=Triangle(int,int,int):St.computeTriangleType() @
2,3,4

Let's use a GA to generate tests for this method

void computeTriangleType() {

2 if (b == ¢)

3 type = "EQUILATERAL";
else

4 type = "ISOSCELES";

type = "ISOSCELES";
} else {

else
checkRightAngle();

St=Triangle(int,int,int):St.computeTriangleType() @
2,33

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {

2 if (b == ¢)

3 type "EQUILATERAL";

else
4 t "ISOSCELES";

Initial Pop.

else if (a == ¢) {
type = "ISOSCELES";
} else {

if (b == c¢)
type = "ISOSCELES";
else
checkRightAngle();

}
System.out.println(type);

X1
x5=2 2,5
7=

Let's use a GA to generate tests for this method

void computeTriangleType() {

e Rank Selection
2 if (b == ¢)

3 type = "EQUILATERAL"; Selection
4 type = "ISOSCELES"; :

\ x2=2,3,4

} else {

if (b == c) X, =3,4,5
type = "ISOSCELES";

else X;=3,57
checkRightAngle();

}
System.out.println(type);

x8=6,8,4

Let's use a GA to generate tests for this method

void computeTriangleType() {

1 if (a == b) { Single Point Crossover
2 if (b == ¢)

a=0.38
3 type = "EQUILATERAL";
4 type = "ISOSCELES"; ¢ 7

} X2=2,4,5

else 1f (a == C) .{ Crossover
type = "ISOSCELES";

} else {

if (b == c¢) X, =3,3,4
type = "ISOSCELES";

else X,=3,95,4
checkRightAngle();

}
System.out.println(type);

Xg=6,8,7

Let's use a GA to generate tests for this method

void computeTriangleType() {
1 if (a == b) {
2 if (b == ¢)
3 type "EQUILATERAL";
else
4 type "ISOSCELES";
}
else if (a == ¢) {
type = "ISOSCELES";
} else {
if (b == c¢)
type = "ISOSCELES";
else
checkRightAngle();

}
System.out.println(type);

Uniform Mutation
a=04

Let's use a GA to generate tests for this method

void computeTriangleType() {

2 if (b == ¢)

3 type "EQUILATERAL";
else

4 type "ISOSCELES";

type = "ISOSCELES";
} else {

else
checkRightAngle();

Convergence reached! The evolution
stops and returns the best individual

Let's use a GA to generate tests for this method

void computeTriangleType() {

2 if (b == ¢)

3 type "EQUILATERAL";
else

4 type "ISOSCELES";

type = "ISOSCELES";
} else {

else
checkRightAngle();

Convergence reached! The evolution
stops and returns the best individual

Now we can repeat the entire process selecting a different coverage target.

Use Cases of ATCG

Making the Facilitate the
System Crash Tester’s Job

Supporting
Debugging

Use Cases of ATCG

Making the Facilitate the
System Crash Tester’s Job
Supporting
Debugging
Drawbacks of ATCG
The Oracle
Problem
Test Code Setting the

Quality Metaheuristic

Discovering Vulnerabilities?

) %) G vl R

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

¥

e

Generate Tests!

o RN
Automatic Test Case Generation: Toward Its Application
in Exploit Generation for Known Vulnerabilities

=

Toward Automated Exploit Generation for
Known Vulnerabilities in Open-Source Libraries

Emanuele lannone’, Dario Di Nucc
SeSa Lab - University

Tilburg University, JADS.

SSAP Security

. Antonino Sabetta®, Andrea De Lucia’
of Salemo, Fisciano, Ttaly

s-Hertogenbosch, The Netherlands

Rescarch, France

unisa.it, d.

Ab: Modern software including
ones, extensively use Open-Source Software (OSS) components,
accounting for 90% of software products on the market. This has
jous security implications, mainly because developers rely on
non-updated versions of libraries affected by software vulnerabil-
ities. Several tools have been developed to help developers detect
these vulnerable libraries and assess and mitigate their impact.
‘The most advanced tools apply sophisticated reachability analyses
to achieve high accuracy; however, they need additional data (in
particular, concrete execution traces, such as those obtained by
running a test suite) that is not always readily available.

In this work, we propase SIEGE, a novel automatic exploit gen-
eration approach based on genetic algorithms, which generates
test cases that execute the methods in a library known to contain
a vulnerability. These fest cases represent precious, concrete
evidence that the vulnerable code can indeed be reached; they

.nl, antonino.s

sap.com, adelucia@unisa.it

for the infamous HEARTBLEED bug. In that casc, a “naive”
vulnerability in OPENSSL 1.0.1 exposed almost half-million
websites (17% of the total at the time), supposedly protected
through SSL, to buffer over-read attacks [10]. As time goes
by, more and more vulnerabilitics of popular OSS libraries
are being discovered [8] and publicly disclosed in vulnera-
bility databases, among which the de-facto standard Narional
Vulnerability Database (NVD) [11], where vulnerabilities a

documented according to the Common Vulnerabilities
Exposures (CVE) standard. This growing trend motivated the
inclusion of “Using components with known vulncrabilities”
into the OWASP Top 10 Web Application Security Risks [12]
in 2013. As of today, that risk is still in the OWASP top-ten.

are also useful for security to better how
the vulnerability could be exploited in practice. This technique
been implemented as an extension of EVOSUITE and applied
on set of 11 vulnerabilities exhibited by widely used OSS Java
libraries. Our initial findings show promising results that deserve
to be assessed further in larger-scale empirical studies.
Index Terms—Exploit Generation, Security Testing, Software
Vulnerabilities.

1. INTRODUCTION

The adoption of software reuse, particularly of third-party
libraries released under open-source licenses, has dramatically
increased over the past two decades and has become pervasive
in today’s software, including commercial products. Recent
analyses [1] estimate that over 90% of software products on the
market include some form of OSS components. Like any other
picce of software, third-party librarics may contain flaws [2],
[3]. whose negative effects are amplified by the fact that they
oceur in components that are broadly adopted [4], [5]. The
complexity in the dependency structures of modem software
systems makes things worse: the impact of the defects occur-
ring decp in the dependency graph is difficult to assess [6] and
to mitigate [7]. One of the primary forms of defect that regu-
larly affect third-party librarics are vulnerabilities [8], which
expose the software to potential attacks against its confiden-
tiality, integrity, and availability (CIA) [9]. For these reasons,
third-party vulnerabilities represent the main threat caused by
inadequate dependency management practices [4] since they
expose client applications (dircctly, or rransitively through
potentially long dependency chains) to abuse, as happencd

Ni s detection and tools have been devel-
oped to tackle this problem [13]-[17]. Almost all of them
analyze a project searching for known vulnerable OSS de-

s. Whenever a y is found, the
common mitigation action consists in updating it to another
non-vulnerable version. While this solution seems reasonable
and casy to adopt, it can be difficult to implement in practice,
particularly when the library to be updated is not a direct
dependency but a transitive one, or when the affected sys!
is in a productive and serves business-
critical functions [3], [18]. Other tools have tackled this
problem by providing finc-grained code analyses to reduce
the number of false alerts (ic., dependencics flagged as
vulnerable but that do not expose the client application to
any threat) [16], [19], [20] in an effort to prioritize library
updates. In this regard, tools such as ECLIPSE STEADY provide
a combination of both static (i.c., call graph-based) and dy-
namic analyses (i.c., test-based) to maximize the reachability
of known vulncrable library constructs (e.g.. method, class)
starting from the client application code. In particular, the
dynamic reachability analysis requires a significant amount of
data from the client application test suite (i.c., execution traces)
to make an effective ity U Y.
many software projects are not adequately tested [21]. Fur-
thermore, the test cases that an attacker would try to trigger
to exploit vulnerabilitics arc inherently different from those
needed for functional testing. Indeed, attackers would try to
explore comer cases and wnusual exccution conditions.

Novelty. In this work, we propose SIEGE (Search-based

8Y T &

o %

Fisi }
SI.} H i

ifiLy

Search-based automatic
Exploit GenEration

e
|}
]

A . -~

Tc;ward Automated Exploit Generation for Known VUInera

E. lannone, D. Di Nucci, A. Sabetta, A. De Lucia.
In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021

ion for
- Libraries

Lucia

inisa.it

bug. In that case, a “naive”
exposed almost half-million
time), supposedly protected
{ attacks [10]. As time goes
es of popular OSS librarics
blicly disclosed in vulnera-
¢ de-facto standard Narional
1], where vulncrabilities are
‘ommon Vulnerabilities and
growing trend motivated the
with known vulnerabilities™
plication Security Risks [12]
still in the OWASP top-ten.
sment tools have been devel-
1-[17]. Almost all of them
known vulnerable OSS de-
le dependency is found, the
in updating it to another
olution seems reasonable
ult to implement in practice,
be updated is not a direct
or when the affected system
ronment and serves business-
ier tools have tackled this
ed code analyses to reduce
.. dependencies flagged as
se the client application to
n effort to prioritize library
as ECLIPSE STEADY provide
., call graph-based) and dy-
0 maximize the reachability
structs (c.g.. method, class)
ion code. In particular, the
uires a significant amount of
st suile (i.c., exceution traces)
y assessment. Unfortunately,
adequately tested [21]. Fur-
attacker would try to trigger
erently different from those
deed, attackers would try to
I execution conditions.

pose SIEGE (Search-based

Toward A

,__________1;?!._______________________________________..

Client application

3rd Party Library .-~

=

: PO £ VT o) PSSt
t Generation for Known Vulnerabilities in Open-Source Libraries

E. lannone, D. Di Nucci, A. Sabetta, A. De Lucia.
In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

ion for
- Libraries

Lucia

inisa.it

bug. In that case, a “naive”
exposed almost half-million
time), supposedly protected
{ attacks [10]. As time goes
es of popular OSS librarics
blicly disclosed in vulnera-
¢ de-facto standard Narional
1], where vulncrabilities are
‘ommon Vulnerabilities and
growing trend motivated the
with known vulnerabilities™
plication Security Risks [12]
still in the OWASP top-ten.
sment tools have been devel-
1-[17]. Almost all of them
known vulnerable OSS de-
le dependency is found, the
in updating it to another
olution seems reasonable
ult to implement in practice,
be updated is not a direct
or when the affected system
ronment and serves business-
ier tools have tackled this
ed code analyses to reduce
.. dependencies flagged as
se the client application to
n effort to prioritize library
as ECLIPSE STEADY provide
., call graph-based) and dy-
0 maximize the reachability
structs (c.g.. method, class)
ion code. In particular, the
uires a significant amount of
st suile (i.c., exceution traces)
y assessment. Unfortunately,
adequately tested [21]. Fur-
attacker would try to trigger
erently different from those
deed, attackers would try to
I execution conditions.

pose SIEGE (Search-based

-
1
1
1

Toward A

_________1'_?!._______________________________________..

Client application

3rd Party Library .-~

2SN £ - YT e

t Generation for Know Vulnerabilities in Open-é

E. lannone, D. Di Nucci, A. Sabetta, A. De Lucia.
In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

5

ource Libraries

ion for
- Libraries

Lucia

inisa.it

bug. In that case, a “naive”
exposed almost half-million
time), supposedly protected
{ attacks [10]. As time goes
es of popular OSS librarics
blicly disclosed in vulnera-
¢ de-facto standard Narional
1], where vulncrabilities are
‘ommon Vulnerabilities and
growing trend motivated the
with known vulnerabilities™
plication Security Risks [12]
still in the OWASP top-ten.
sment tools have been devel-
1-[17]. Almost all of them
known vulnerable OSS de-
le dependency is found, the
sts in updating it to another
is solution seems rcasonable
ult to implement in practice,
be updated is not a direct
or when the affected system
ronment and serves business-
ier tools have tackled this
ed code analyses to reduce
.. dependencies flagged as
se the client application to
n effort to prioritize library
as ECLIPSE STEADY provide
., call graph-based) and dy-
0 maximize the reachability
structs (c.g.. method, class)
ion code. In particular, the
uires a significant amount of
st suile (i.c., exceution traces)
y assessment. Unfortunately,
adequately tested [21]. Fur-
attacker would try to trigger
erently different from those
deed, attackers would try to
I execution conditions.

pose SIEGE (Search-based

SIEGE’s Exploit

</>

A

Generates

Vulnerability Location

=

Toward Autdmated Exbl eneration for Known Vulnerabilities in Open-Source Libraries

E. lannone, D. Di Nucci, A. Sabetta, A. De Lucia.
In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

ion for
- Libraries

Lucia

inisa.it

bug. In that case, a “naive”
exposed almost half-million
time), supposedly protected
{ attacks [10]. As time goes
es of popular OSS librarics
blicly disclosed in vulnera-
¢ de-facto standard Narional
1], where vulncrabilities are
‘ommon Vulnerabilities and
growing trend motivated the
with known vulnerabilities™
plication Security Risks [12]
still in the OWASP top-ten.
sment tools have been devel-
1-[17]. Almost all of them
known vulnerable OSS de-
le dependency is found, the
sts in updating it to another
is solution seems rcasonable
ult to implement in practice,
be updated is not a direct
or when the affected system
ronment and serves business-
ier tools have tackled this
ed code analyses to reduce
.. dependencies flagged as
se the client application to
n effort to prioritize library
as ECLIPSE STEADY provide
., call graph-based) and dy-
0 maximize the reachability
structs (c.g.. method, class)
ion code. In particular, the
uires a significant amount of
st suile (i.c., exceution traces)
y assessment. Unfortunately,
adequately tested [21]. Fur-
attacker would try to trigger
erently different from those
deed, attackers would try to
I execution conditions.

pose SIEGE (Search-based

SIEGE’s Exploit

Starts from

</>

A

Generates

Vulnerability Location

=

Toward Autdmated Exbl eneration for Known Vulnerabilities in Open-Source Libraries

E. lannone, D. Di Nucci, A. Sabetta, A. De Lucia.
In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

ion for
- Libraries

Lucia

inisa.it

bug. In that case, a “naive”
exposed almost half-million
time), supposedly protected
{ attacks [10]. As time goes
es of popular OSS librarics
blicly disclosed in vulnera-
¢ de-facto standard Narional
1], where vulncrabilities are
‘ommon Vulnerabilities and
growing trend motivated the
with known vulnerabilities™
plication Security Risks [12]
still in the OWASP top-ten.
sment tools have been devel-
1-[17]. Almost all of them
known vulnerable OSS de-
le dependency is found, the
sts in updating it to another
is solution seems rcasonable
ult to implement in practice,
be updated is not a direct
or when the affected system
ronment and serves business-
ier tools have tackled this
ed code analyses to reduce
.. dependencies flagged as
se the client application to
n effort to prioritize library
as ECLIPSE STEADY provide
., call graph-based) and dy-
0 maximize the reachability
structs (c.g.. method, class)
ion code. In particular, the
uires a significant amount of
st suile (i.c., exceution traces)
y assessment. Unfortunately,
adequately tested [21]. Fur-
attacker would try to trigger
erently different from those
deed, attackers would try to
I execution conditions.

pose SIEGE (Search-based

SIEGE’s Exploit

Starts from

</>

A

Generates

Vulnerability Location

=

Toward Autdmated Exbl eneration for Known Vulnerabilities in Open-Source Libraries

E. lannone, D. Di Nucci, A. Sabetta, A. De Lucia.
In: Proceedings of the 29th IEEE/ACM International Conference on Program Comprehension (ICPC), 2021.

. 1
Preprocessing s

Client Application

Vulnerability
Description

Goal Preparation g

Create Fitness

Function

GA Settings

Generate
Individuals

Execute Evaluate
Individuals Fitness

GA Execution

SIEGE's Exploit

Preprocessing Goal Preparation

Create Fitness
Function

e ;3
wﬁliw

Client Application GA Settings

Description

SIEGE runs on an arbitrary Java
application that includes
vulnerable dependencies

GA Execution

SIEGE's Exploit

Preprocessing Goal Preparation

Create Fitness
Function

Client Application GA Settings

Description

SIEGE runs on an arbitrary Java
application that includes
vulnerable dependencies

SIEGE extracts the entire classpath
call graph and the control flow
graphs

GA Execution

SIEGE's Exploit

Preprocessing . Goal Preparation GA Execution

1

1

1

(7 N : / \
No

Analyze ‘ .l Generate No Yos
Program ; Individuals

i

Ll

1

'

1

‘ Yes

Instrument Create Fitness

Bytecode Function

Minimize

Execute | Evaluate

>

1
1
‘ 1
: , Individuals Fitness
:
1
1
1

N %

B VUMHN

Client Application GA Settings SIEGE's Exploit

Description

SIEGE runs on an arbitrary Java
application that includes
vulnerable dependencies . '

SIEGE largely reuses of EvoSuite
features: program analysis, bytecode
instrumentation, ATCG infrastructure,

test execution engine.

SIEGE extracts the entire classpath
call graph and the control flow
graphs

Preprocessing . Goal Preparation GA Execution
1

Create Fitness
Function

Vulnerability GA Settings

Description

Client Application SIEGE's Exploit

SIEGE needs to locate the target
vulnerable construct:

(1) Class name

(2) Method name

(8) Line number

Preprocessmg Goal Preparation

ST 7
Instrument | Prepare Create Fitness

Client Application ~ Vulnerability

Description GA Settings

SIEGE needs to locate the target
vulnerable construct:

(1) Class name

(2) Method name

(8) Line number

Prepare the fitness function that
rewards the test cases that are
closer to the target line

Generate
Individuals

Execute
Individuals

GA Execution

SIEGE's Exploit

Preprocessing Goal Preparation GA Execution

Generate
Individuals

Analyze
Program

3

Instrument Create Fitness
Bytecode "l Function

Minimize
Execute | Evaluate

Individuals Fitness

\ %

<[> “

Client Application ~ Vulnerability GA Settings SIEGE's Exploit
Description

public void process(final HttpRequest request, final HttpContext context) {

SIEGE needs to locate the target 66 if (request == null) {
) 67 throw new IllegalArgumentException("HTTP request may not be null");
vulnerable construct: 68)

(1) Class name 69 if (context == null) {
70 throw new IllegalArgumentException("HTTP context may not be null");

(2) Method name 71}
i 72
(3) Line number 73 if (request.containsHeader (AUTH.PROXY_AUTH_RESP)) {
74 return;
. . 75}
Prepare the fitness function that 76
77 // Obtain authentication state

rewards the test cases that are 78 AuthState authState = (AuthState) context.getAttribute(
closer to the target line 79 ClientContext.PROXY_AUTH_STATE) ;
CVE-2011-1498

Preprocessmg Goal Preparation . GA Execution

1

1

£ l e/

1l

: Generate
Individuals

r—————
Create Fitness
Function Exocute Evaluato
Individuals Fitness

wﬁnw %

Client Application GA Settings SIEGE's Exploit

Description

A population of JUnit test cases is
evolved with a GA...

Preprocessing . Goal Preparation :
1

ST 7
Instrument Create Fitness
Bytecode Function

wﬁnw

Client Application GA Settings

Description

A population of JUnit test cases is
evolved with a GA...

SIEGE's Exploit

...if a test case covers the target
vulnerable line...

N 1
Preprocessing
1

Analyze

Program

3

Instrument
Bytecode

A

Goal Preparation :

Create Fitness
Function

Generate
Individuals

Execute
Individuals

| Evaluate

Fitness

GA Execution

No

Yes

Minimize

N /

B wﬁmy

Client Application GA Settings

S SIEGE's Exploit
Description

A population of JUnit test cases is
evolved with a GA...

...if a test case covers the target
vulnerable line...

...it is considered an exploit!

1
Preprocessing

Analyze
Program

3

Instrument
Bytecode

A

Goal Preparation :

Create Fitness
Function

Generate
Individuals

Execute
Individuals

| Evaluate

Fitness

GA Execution

No

Yes

Minimize

N)

00 F™'S
<[>

Client Application

Vulnerability

oy SIEGE's Exploit
Description

GA Settings

Exploit for

CVE-2011-1498
public void test@() throws Throwable {

CallingClient1 callingClient1_0 = new CallingClient1();
BasicHttpRequest basicHttpRequestf =

new BasicHttpRequest("", "");
BasicHttpContext basicHttpContext@ =

new BasicHttpContext((HttpContext) null);
callingClient1_0.call(basicHttpRequest®, basicHttpContext®);

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Exploratory Evaluation

7

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

@

KB Dataset

G o o e o o e e e e S S S e e S e e e e e

Exploratory Evaluation

7

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

KB Dataset 11 CVE

G o o e o o e e e e S S S e e S e e e e e

Exploratory Evaluation

7

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

KB Dataset 11 CVE

B

Exploratory Evaluation

7

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

KB Dataset 11 CVE

11 OSS Projects
34y
L4 g4

11 “Toy”
Clients

&

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

KB Dataset 11 CVE

11 OSS Projects

- 3 7d
34z
[S |

Test w/ Different 11 “Toy”
Search Budgets Clients

I e ERE B

&

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

@

O Commons Compress O HttpCommons Client

g Tomcat O Zeppelin
Jasypt

O Jenkins
) Multijob () Maitr

() commons FileUpload () Primefaces

1T 181 ' o

3
Z
=3

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

O,

O Commons Compress O HttpCommons Client

g Tomcat O Zeppelin
Jasypt

Nifi
Jenkins
Mail
() Multijob aller
() commons FileUpload Primefaces

G o o e o o e e e e S S S e e S e e e e e

1T 181 ' b

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

O Commons Compress O HttpCommons Client

g Tomcat O Zeppelin
Jasypt

i [Nifi]

[Jenkins]
) Multijob (L Mailer]
| i Primef
E O Commons FileUpload rmetaces

G o o e o o e e e e S S S e e S e e e e e

1T 181 ' b

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

O,

O Commons Compress O HttpCommons Client

g Tomcat O Zeppelin
Jasypt

Nifi
Jenkins
Mail
) Muttijob arer
() commons FileUpload | Primefaces

G o o e o o e e e e S S S e e S e e e e e

1T 181 ' b

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

& 1
o @ The intrinsic complexity of a vulnerability m

makes the exploit generation harder

e oo o o o o e e e e e e e e e e e e

1 ™ IR | o

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

@ The intrinsic complexity of a vulnerability m

makes the exploit generation harder

The way the client application “guards” the 0
vulnerable constructs makes the exploit t
generation harder

e oo o o o o e e e e e e e e e e e e

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party

vulnerabilities included within client applications?
R seseeeeeeee—— > ee————

The intrinsic complexity of a vulnerability m

makes the exploit generation harder

The way the client application “guards” the 0
vulnerable constructs makes the exploit t
generation harder

Q The GA settings influences the exploit
ﬁ generation performance

R
&

e oo o o o o e e e e e e e e e e e e

Future
Directions

Future
Risk R ti . .
SIEGE could Srodl?cpeo; rre‘gort in which DlreCtlonS

it explains why it succeeded/failed.

Future
Risk R ti . .
SIEGE could Srodl?cpeo; rre‘gort in which DlreCtlonS

it explains why it succeeded/failed.

Vulnerability Generalized Description
Automatically build the fithess function
using Steady’s Patch Analyzer

= -
4N

Future
Risk R ti . .
SIEGE could Srodl?cpeo; rre‘gort in which DlreCtlonS

it explains why it succeeded/failed.

Vulnerability Generalized Description
Automatically build the fithess function
using Steady’s Patch Analyzer

'_! -<'

0y A

Extended Evaluation

Consider real-world client applications
and larger set of CVEs

\ WA AV TV A

y - Inspired by the natural selection mechanisms,
GENETIC evolves a set of candidate solutions to
ALGORITHMS

optimize a given fitness function

QUILATERAL" ;

se
type = "ISOSCELES";
}

else
checkRightAngle() ;
}

St=Triangle(int,intint):St.computeTriangleType() @ g
2,33 I

on for
Libraries

Starts from

o
Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Generates

-

3rd Party Library

11 0SS Projects o
($) '
= - ==
¢ T ia

2 = i H N {3 X Test w/ Different
Generation for Known Vulner: ies in Open-Source Libraries 9] 0 Search Budgets
inone, D. Di N ADe

KB Dataset

>

Vulnerabilty Location
ke

§

Future
Risk R rti - -
SIEGE could l:rodfc?a ::gon el Directions

it explains why it succeeded/failed.

N
Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

The intrinsic complexity of a vulnerability Findings
makes the exploit generation harder

ip
Automatically build the fitness function

The way the client application “guards” the using Steady’s Patch Analyzer

vulnerable constructs makes the exploit t L
generation harder a

Extended Evaluation
Consider real-world client applications
and larger set of CVE

Automatic Test Case Generation: Toward Its Application

QO The GA settings influences the exploit
.o

generation performance

in Exploit Generation for Known Vulnerabilities

Let's use a GA to generate tests for this method

void computeTriangleType() {
; lfh(ca(;:=t=))0§ St=Triangle(int,int,int):St.computeTriangleType() @
3 type = "EQUILATERAL"; 10,12,5
else
4 type = "ISOSCELES";
}

else if (a == ¢) {
G720 3 RS f(x) = AL(P(x),t) + BD(P(x),t)
} else {
if (b == c¢)
type = "ISOSCELES";
else Minimum number
checkRightAngle(); of control nodes between
} a covered statement and
System.out.println(type); the target t

Distance measure (normalized 0..1)
between the first control node where
the execution and the target t

fi(g,ti) = <

3 -

3

(3 — CS(g.cc, t;)

size(g.b)—AL(g.ce,t;)

size(g.b)

CL(g.tl,t;)+1

g.ti+1

if CS(g.cc,t;) < 1

if CS(g.ce,t;) = 1and
AL(g.b,t;) >0

if CS(g.cc,t;) = 1and
AL(g.b,t;) = 0and
CL(g.tl,t;) < g.tl

otherwise

Context Similarity

Ratio of the number of method calls
covered by the individual of the
target call context (list of method
calls to reach the target method).

Approach Level i
b
E

Minimum number of control nodes
between a covered statement and
the target branch.

Closest Line

The line number that is closest to the
target line.

Monotonic GA Rank Selection

Variant of the Standard GA Creates an ordering of the individuals
metaheuristic which prevents the based on their fithess scores and
“degradation” of the best individuals selects them according to their rank
across different generations.

F
i Single-point Crossover Uniform statement mutation I
N

b

E

Crosses the individuals’ statements Which randomly mutates (inserts,
by selecting a random split point to deletes, or changes) a single
produce offsprings. statement by sampling from a

) uniform distribution.

:

1

A

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

11 different Java OSS libraries from the KB dataset

—

We considered 11 known vulnerabilities, pertaining to] M

ﬂ

We prepared 11 “toy” client applications which were
forced to include the above vulnerable dependencies

N
.

Test with 5, 15, 30 and 60 seconds of search budget to
see whether SIEGE changes behaviour as expected

R W 1 1

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party

vulnerabilities included within client applications?
_______________________ D aeee————

Search Budgets (sec)

1
I PRIMEFACES 6.1 2.00
1
1

1
| |
' :
i Library Version & 15 30 I
| Fit. Gen. Fit. Gen. Fit. Gen. Fit. !
! CoMMONS COMPRESS 1% . 38 : v :
‘ TOMCAT 7.0.12 0.00 1 | 0.00 1 | 0.00 1 | 0.00 1 v 1
I JASYPT 1.9.1 0.00 1 0.00 1 0.00 1 0.00 | (4 :
: JENKINS 2.89.3 3.00 53 | 3.00 190 3.00 397 | 3.00 799 | ® |
1 MUuLTUOB PLUGIN 1.26 0.00 1 | 0.00 1 0.00 1 | 0.00 1 4 I
I CoMMONS FILEUPLOAD 131 0.00 1 | 0.00 1 | 0.00 1 | 0.00 1 (4 :
: HTTPCOMPONENTS CLIENT 4.1 0.00 1 0.00 1 0.00 1 0.00 1 4 1
1 ZEPPELIN 0.6.0 0.00 1 | 0.00 1 | 0.00 1 | 0.00 1 v !
- NIFI 1.7.1 3.00 6 3.00 80 3.00 280 | 3.00 552 x :
MAILER PLUGIN 1.20 3.00 36 | 3.00 221 3.00 504 | 3.00 945 ® 1
23 | 2.00 93 | 2.00 218 | 2.00 492 % :
|
J

Exploratory Evaluation

Library

CoMMONS COMPRESS
ToMCAT

JASYPT

JENKINS

MULTIJOB PLUGIN
CoMMONS FILEUPLOAD
HTTPCOMPONENTS CLIENT
ZEPPELIN

NIFI

MAILER PLUGIN
PRIMEFACES

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Version

Search Budgets (sec)
£ 15 30 60
Fit. Gen. Fit. Gen. Fit. Gen. Fit. Gen.

63.64% of the cases were covered:
an exploit was successfully generated

L geee—————

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Search Budgets (sec)
Library Version 5 15 30
Fit. Gen. Fit. Gen. Fit. Gen. Fit. Gen.

CoMMONS COMPRESS

v
TOMCAT 1 v
JASYPT 1 v
JENKINS Giving higher budget increase the chance of SEEEE
MULTIJOB PLUGIN . .) 1 v
R generating an exploit, as expected 1 (e
HTTPCOMPONENTS CLIENT 1 ("4
ZEPPELIN 1 v
NIFI 552 ®
MAILER PLUGIN 945 ®
PRIMEFACES 492 ®

Exploratory Evaluation

Search Budgets (sec)
Library Versiczs = 1z 20

Fitness = 3 means that the target
CoMMONS COMPRESS
R "%y Vulnerable class was not reached at all
JASYPT 1.9.1
JENKINS 2.89.3 53
MULTIJOB PLUGIN 1.26 0.00 1 | 0.00 1 | 0.00
CoMMONS FILEUPLOAD 131 0.00 1 | 0.00 1 | 0.00
HTTPCOMPONENTS CLIENT 4.1 0.00 1 | 0.00 1 | 0.00
ZEPPELIN 0.6.0 0.00 1 | 0.00 1 | 0.00
NIFI .71 3.00 6 | 3.00 80 | 3.00
MAILER PLUGIN 1.20 3.00 36 | 3.00 221 | 3.00
PRIMEFACES 6.1 2.00 23 | 2.00 93 | 2.00

Exploratory Evaluation

Does SIEGE succeed in generating exploits of third-party
vulnerabilities included within client applications?

Search Budgets (sec)
Library Version 5 15 30
Fit. Gen. Fit. Gen. Fit. Gen.

ZEPPELIN 0.6.0

CoMMONS COMPRESS 0.18 38 | 0.00 21 4
TOMCAT 7) 5) 0.00 1 | 0.00 1 0.00 1 4
JASYPT 1.9.1 0.00 1 | 0.00 1 | 0.00 1 | 0.00 1 4
JENKINS 2.89.3 e . e e e e e 799 %
MULTIJOB PLUGIN 1.26 Fitness = 2 means that the target 5
CoMMONS FILEUPLOAD 1.3.1
T e Tma e vulnerable method was not called Y
4
NIFI L7 3.00 80 i ®
MAILER PLUGIN 1.20 3.00 221 3.00 504 .3
PRIMEFACES 6.1 2.00 93 2.00 218 x

G o o e o o e e e e S S S e e S e e e e e

