
MSR for Vulnerability Prediction

Emanuele Iannone
SeSa Lab @ University of Salerno, Italy
emaiannone@unisa.it

Master Course “Cybersecurity Data Science”
Winter Semester 22/23

Mining Vulnerability-Contributing Commits

Vulnerability-contributing commit (VCC)

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

Vulnerability-contributing commit (VCC)

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“A commit that contributed to the
introduction of a post-release

vulnerability.”

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Vulnerability-contributing commit (VCC)

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“A commit that contributed to the
introduction of a post-release

vulnerability.”

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Vulnerability-contributing commit (VCC)

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“A commit that contributed to the
introduction of a post-release

vulnerability.”

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Code changes that “move” the code toward the state in
which it contains the weakness.

Vulnerability-contributing commit (VCC)

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“A commit that contributed to the
introduction of a post-release

vulnerability.”

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

time

File A

VCC VCC VCC

Code changes that “move” the code toward the state in
which it contains the weakness.

Vulnerability-contributing commit (VCC)

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“A commit that contributed to the
introduction of a post-release

vulnerability.”

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Vulnerability-contributing commit (VCC)

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“A commit that contributed to the
introduction of a post-release

vulnerability.”

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

The concept is irrelevant for pre-release vulnerabilities,
fixed the exposure to externals.

Vulnerability-contributing commit (VCC)

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“A commit that contributed to the
introduction of a post-release

vulnerability.”

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

time

File A

VCC VCC VCC

The concept is irrelevant for pre-release vulnerabilities,
fixed the exposure to externals.

Release

Vulnerability-contributing commit (VCC)

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“A commit that contributed to the
introduction of a post-release

vulnerability.”

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

time

File A

ReleaseVCC VCC VCC

The concept is irrelevant for pre-release vulnerabilities,
fixed the exposure to externals.

Example of a VCC

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“Cloud Foundry UAA, versions prior to 74.0.0, is vulnerable to an XSS attack. A
remote unauthenticated malicious attacker could craft a URL that contains a SCIM

filter that contains malicious JavaScript, which older browsers may execute.”

CVE-2019-11274

Example of a VCC

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“Cloud Foundry UAA, versions prior to 74.0.0, is vulnerable to an XSS attack. A
remote unauthenticated malicious attacker could craft a URL that contains a SCIM

filter that contains malicious JavaScript, which older browsers may execute.”

CWE-79: Improper Neutralization of Input During
Web Page Generation ('Cross-site Scripting')

CVE-2019-11274

Example of a VCC

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

“Cloud Foundry UAA, versions prior to 74.0.0, is vulnerable to an XSS attack. A
remote unauthenticated malicious attacker could craft a URL that contains a SCIM

filter that contains malicious JavaScript, which older browsers may execute.”

We expect unescaped or unvalidated data supplied from the
user via URL parameters that end up directly in the response.

CWE-79: Improper Neutralization of Input During
Web Page Generation ('Cross-site Scripting')

CVE-2019-11274

Example of a VCC

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

CVE-2019-11274

@RequestMapping(value = {"/Groups"}, method = RequestMethod.GET)
@ResponseBody
public SearchResults<?> listGroups(
 @RequestParam(value = "attributes", required = false) String attributesCommaSeparated,
 @RequestParam(required = false, defaultValue = "id pr") String filter,
 @RequestParam(required = false, defaultValue = "created") String sortBy,
 @RequestParam(required = false, defaultValue = "ascending") String sortOrder,
 @RequestParam(required = false, defaultValue = "1") int startIndex,
 @RequestParam(required = false, defaultValue = "100") int count) {
 if (count > groupMaxCount) {
 count = groupMaxCount;
 }
 List<ScimGroup> result;
 try {
 result = dao.query(filter, sortBy, "ascending".equalsIgnoreCase(sortOrder),
 identityZoneManager.getCurrentIdentityZoneId());
 } catch (IllegalArgumentException e) {
 throw new ScimException("Invalid filter expression: [" + filter + "]",
 HttpStatus.BAD_REQUEST);
 throw new ScimException("Invalid filter expression: [" + HtmlUtils.htmlEscape(filter) + "]",
 HttpStatus.BAD_REQUEST);
 }
 [...]

Fix
a34f55fc

Example of a VCC

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

CVE-2019-11274

@RequestMapping(value = {"/Groups"}, method = RequestMethod.GET)
@ResponseBody
public SearchResults<?> listGroups(
 @RequestParam(value = "attributes", required = false) String attributesCommaSeparated,
 @RequestParam(required = false, defaultValue = "id pr") String filter,
 @RequestParam(required = false, defaultValue = "created") String sortBy,
 @RequestParam(required = false, defaultValue = "ascending") String sortOrder,
 @RequestParam(required = false, defaultValue = "1") int startIndex,
 @RequestParam(required = false, defaultValue = "100") int count) {
 if (count > groupMaxCount) {
 count = groupMaxCount;
 }
 List<ScimGroup> result;
 try {
 result = dao.query(filter, sortBy, "ascending".equalsIgnoreCase(sortOrder),
 identityZoneManager.getCurrentIdentityZoneId());
 } catch (IllegalArgumentException e) {
 throw new ScimException("Invalid filter expression: [" + filter + "]",
 HttpStatus.BAD_REQUEST);
 throw new ScimException("Invalid filter expression: [" + HtmlUtils.htmlEscape(filter) + "]",
 HttpStatus.BAD_REQUEST);
 }
 [...]

Essentially, the filter parameter is not
sanitized and is placed directly in this
ScimException. Then, this exeption

message is placed verbatim on an error page.

Fix
a34f55fc

Example of a VCC

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

CVE-2019-11274

@RequestMapping(value = {"/Groups"}, method = RequestMethod.GET)
@ResponseBody
public SearchResults<?> listGroups(
 @RequestParam(value = "attributes", required = false) String attributesCommaSeparated,
 @RequestParam(required = false, defaultValue = "id pr") String filter,
 @RequestParam(required = false, defaultValue = "created") String sortBy,
 @RequestParam(required = false, defaultValue = "ascending") String sortOrder,
 @RequestParam(required = false, defaultValue = "1") int startIndex,
 @RequestParam(required = false, defaultValue = "100") int count) {
 if (count > groupMaxCount) {
 count = groupMaxCount;
 }
 List<ScimGroup> result;
 try {
 result = dao.query(filter, sortBy, "ascending".equalsIgnoreCase(sortOrder),
 identityZoneManager.getCurrentIdentityZoneId());
 } catch (IllegalArgumentException e) {
 throw new ScimException("Invalid filter expression: [" + filter + "]",
 HttpStatus.BAD_REQUEST);
 throw new ScimException("Invalid filter expression: [" + HtmlUtils.htmlEscape(filter) + "]",
 HttpStatus.BAD_REQUEST);
 }
 [...]

Let’s go back in time to find the commit
that contributed to this problem!

Fix
a34f55fc

Example of a VCC

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

CVE-2019-11274

VCC
bb8ff8f4

@RequestMapping(value = { "/Groups/External/list" }, method = RequestMethod.GET)
@ResponseBody
public SearchResults<?> listExternalGroups(
 @RequestParam(required = false, defaultValue = "1") int startIndex,
 @RequestParam(required = false, defaultValue = "100") int count) {
 String filter = "";
 List<ScimGroupExternalMember> result;
 try {
 result = externalMembershipManager.query(filter);
 } catch (IllegalArgumentException e) {
 throw new ScimException("Invalid filter expression: [" + filter + "]",
 HttpStatus.BAD_REQUEST);
 }
 [...]

Example of a VCC

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

CVE-2019-11274

VCC
bb8ff8f4

@RequestMapping(value = { "/Groups/External/list" }, method = RequestMethod.GET)
@ResponseBody
public SearchResults<?> listExternalGroups(
 @RequestParam(required = false, defaultValue = "1") int startIndex,
 @RequestParam(required = false, defaultValue = "100") int count) {
 String filter = "";
 List<ScimGroupExternalMember> result;
 try {
 result = externalMembershipManager.query(filter);
 } catch (IllegalArgumentException e) {
 throw new ScimException("Invalid filter expression: [" + filter + "]",
 HttpStatus.BAD_REQUEST);
 }
 [...]

This was the first revision where the filter
parameters was put inside the exception

message: the vulnerability was there since the
method (with a different name) was born.

Terminology

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

Fix-inducing Change

Bug-inducing Change

Bug-introducing Change
Bug-injecting Change

Long story short: as long as we all agree, it makes no
(real) difference.

Meneely et al. argued about the term “fix-inducing”, which can be
translated into “persuade to fix (the bug)”. In their view, a VCC does not
persuade developers to fix the vulnerability… the vulnerability is fixed after
its discovery, not because of a flawed commit!

The core idea behind VCCs is not new to the MSR world, and stems the
from research on traditional bugs.

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

Main Uses of VCCs

Train Vulnerability
Prediction Models

Recover Vulnerable
Versions/Releases

Expand the Knowledge
on Vulnerabilities

Understand how vulnerabilities are
progressively introduced in the

code, drawing out interesting facts.

VCCs can help understand which
project releases are affected by the

vulnerability.

We can build a just-in-time
vulnerability prediction model if
the dataset is made of VCCs and

non-VCCs.

Key Characteristics of VCCs

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

A case study on Apache HTTP Server with 68 post-release vulnerabilities and 124 VCCs.

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

VCCs vs non-VCCs

Key Characteristics of VCCs

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Size matters

VCCs vs non-VCCs

VCCs change x10 more lines of code than non-VCCs.

A case study on Apache HTTP Server with 68 post-release vulnerabilities and 124 VCCs.

Key Characteristics of VCCs

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Size matters

VCCs are made by new authors in 15% more cases than non-VCCs.

Don’t step on
someone’s toes

VCCs vs non-VCCs
A case study on Apache HTTP Server with 68 post-release vulnerabilities and 124 VCCs.

Key Characteristics of VCCs

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Size matters

VCCs affect existing files in 87% of the cases rather than new files.

Don’t step on
someone’s toes

A leopard CAN
change its spots

VCCs vs non-VCCs
A case study on Apache HTTP Server with 68 post-release vulnerabilities and 124 VCCs.

Key Characteristics of VCCs

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Changing other developers' code might increase the
chance of contributing to a vulnerability.

Vulnerabilities are more likely to be added when
modifying existing files rather than creating new files.

VCCs vs non-VCCs
A case study on Apache HTTP Server with 68 post-release vulnerabilities and 124 VCCs.

Large commits might increase the chance of
contributing to a vulnerability.

Yeah, cool.
How can we
mine them?

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

Post-release
vulnerability

Can be a known vulnerability from NVD
or another source, it is the same.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Fixing
commit(s)

Unnamed Technique by Meneely et al.

Post-release
vulnerability

We assume the vulnerability is already
mapped to its fixing commits.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Fixing
commit(s)

Unnamed Technique by Meneely et al.

Post-release
vulnerability

Manual
analysis

One (or more) inspectors examine(s) the patch
and its context to find the vulnerable code
elements (statements). All the fixing commits
are analyzed as one single big commit.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Fixing
commit(s)

Unnamed Technique by Meneely et al.

Post-release
vulnerability

Manual
analysis

Ad hoc
detection script

Detecting the vulnerable code elements is
supported by a regex-based string
search crafted by the inspector(s). This
script is continuously updated until the
vulnerability is fully understood.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Fixing
commit(s)

Unnamed Technique by Meneely et al.

Post-release
vulnerability

Manual
analysis

Ad hoc
detection script

Vulnerable code
regions (Hunks)

At the end of the manual analysis, we expect the
script to be able to automatically find the vulnerable
code regions in the last vulnerable revision (the
one just before the first fixing commit).

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Fixing
commit(s)

Unnamed Technique by Meneely et al.

Post-release
vulnerability

Manual
analysis

Ad hoc
detection script

Vulnerable code
regions (Hunks)

Assisted
binary search

git bisect

Git bisect is run to find the culprit vulnerability-
contributing commit. This command helps to
find the commit we are looking for (the VCC).

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git checkout

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

This will start our procedure. The first thing we
must do is flag a commit that we are sure is
vulnerable. That is, this one!

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

This will set the last vulnerable version as the “upper
bound” of the process. Now, we have to look for the “lower
bound”. The project start can be a good candidate.

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

The main process starts now. Git will select a commit
in the middle, on which we are automatically checked
out so that we can inspect it.

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

Instead of doing another manual inspection, we just
ran the detection script prepared before.

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

git bisect good

Let’s assume the script said this commit does not
have the vulnerability: this is a “good” commit.

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

git bisect good

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

git bisect good

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

git bisect good

git bisect bad

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

git bisect good

git bisect bad

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

git bisect good

git bisect bad

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

git bisect good

git bisect bad

git bisect bad

git bisect

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

time

Potential
VCC

1st fix commit

Last vulnerable
revision

git bisect start

git checkout

git bisect bad

Project initial
commi

git bisect good

git bisect good

git bisect bad

git bisect badWhen no more revisions are left, the last commit we
have flagged as “bad” is our candidate VCC!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Fixing
commit(s)

Unnamed Technique by Meneely et al.

Post-release
vulnerability

Manual
analysis

Ad hoc
detection script

Vulnerable code
regions (Hunks)

VCC? Assisted
binary search

git bisect

The obtained VCC is re-inspected to assess
whether it is the real VCC of this vulnerability.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Fixing
commit(s)

Unnamed Technique by Meneely et al.

Post-release
vulnerability

Manual
analysis

Ad hoc
detection script

Vulnerable code
regions (Hunks)

VCC? Assisted
binary search

git bisect

Updated script

“mmh, not
convinced”If the inspector believes

this is not the real VCC,
the detection script is
updated, and the bisect
process starts again.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach
Now let’s see how we can retrieve VCCs from project histories.

Fixing
commit(s)

Unnamed Technique by Meneely et al.

Post-release
vulnerability

Manual
analysis

Ad hoc
detection script

Vulnerable code
regions (Hunks)

VCC? Assisted
binary search

git bisect

Updated script

VCC

“LGTM”

“mmh, not
convinced”

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World
Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

The original approach relies on Bugzilla, but we
can mine any bug tracker or similar database.

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

The original approach relies on CVS (Concurrent
Versioning System), but here we consider git.

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Bug Report

We pick a bug report for which we want to know
its bug-inducing commits (BICs).

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

Bug Report

We can run any commit-issue link algorithm we want. The
original approach uses a pattern-based search, looking
for the bug ID (a number) inside the commit messages. In
any case, we just want the bug-fixing commit.

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git diff

Bug Report

The git diff allows the retrieval of
the lines changed (added and
deleted) in the files modified in the
fixing commit.

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git diff
+
+
-
-
-

Changed

Lines

Bug Report

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git diff
+
+
-
-
-

Changed

Lines

Bug Report
Last buggy

revision

We go back to the previous commit, which
we assume is the last revision with the bug.

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

git diff
+
+
-
-
-

Changed

Lines

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame
Last buggy

revisionBug Report This is the core of the technique. The blame function
(or annotate, the legacy version) marks each line of
a file with the last commit that modified it.

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame
Last buggy

revisionBug Report This is the core of the technique. The
blame function (or annotate, the legacy
version) marks each line of a file with
the last commit that modified it.

git diff
+
+
-
-
-

Changed

Lines

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame
Last buggy

revisionBug Report

Here, git blame is
run on all the files
modified in the
fixing commit.
Let’s assume it was
only just one.

Annotated
file(s)

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame

git diff
+
+
-
-
-

Changed

Lines

Annotated
file(s)

Last buggy
revisionBug Report

By intersecting
these results, we
obtain the set of
commits that
created the lines
deleted in the
fixing commit.

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame

git diff
+
+
-
-
-

Changed

Lines

Annotated
file(s)

Last buggy
revisionBug Report

We discard the
commits made after
the bug was
reported.

Candidate
BICs

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame

git diff
+
+
-
-
-

Changed

Lines

Annotated
file(s)

Last buggy
revisionBug Report

Candidate
BICs

BICs

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Śliwerski, Zimmermann, Zeller (SZZ)

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame

git diff
+
+
-
-
-

Changed

Lines

Annotated
file(s)

Last buggy
revisionBug Report

VCCs

vulnerable
Vulnerability

Report

Candidate
BICs

BICs

VCCs

VCCs

Vulnerability
Tracker

Meneely et al.’s technique doesn’t scale: it’s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World
The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

If the fixing commit also modified an existing comment or removed a blank line,
the BICs (or VCCs) resulting from blaming these lines would be false positives: they

made no real contribution to the bug.

Comments and Blank Lines

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Comments and Blank Lines

1: public void foo() {
2: // print out report
3: if (report != null)
4: {
5: println(report);
6: }

Fixed RevisionLast buggy/vulnerable

1: public void foo() {
2: // print report
3: if (report == null)
4: {
5: println(report);
6:
7: }

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

If the fixing commit also modified an existing comment or removed a blank line,
the BICs (or VCCs) resulting from blaming these lines would be false positives: they

made no real contribution to the bug.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Comments and Blank Lines

1: public void foo() {
2: // print out report
3: if (report != null)
4: {
5: println(report);
6: }

Fixed RevisionLast buggy/vulnerable

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

If the fixing commit also modified an existing comment or removed a blank line,
the BICs (or VCCs) resulting from blaming these lines would be false positives: they

made no real contribution to the bug.

Two lines changed,
one was just
deleted.

1: public void foo() {
2: // print report
3: if (report == null)
4: {
5: println(report);
6:
7: }

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

1: public void foo() {
2: // print out report
3: if (report != null)
4: {
5: println(report);
6: }

Last buggy/vulnerable

git blameCommit adding the “print
report” comment

False positives!

git blameCommit adding
the blank line

Comments and Blank Lines

1: public void foo() {
2: // print report
3: if (report == null)
4: {
5: println(report);
6:
7: }

Fixed Revision

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

If the fixing commit also modified an existing comment or removed a blank line,
the BICs (or VCCs) resulting from blaming these lines would be false positives: they

made no real contribution to the bug.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

If the fixing commit modified a line that underwent at least one format change
after the bug was introduced, the BICs (or VCCs) resulting from blaming these
lines would be false positives, and the real BICs (VCCs) will be false negatives.

Format/Aesthetic Changes

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

1: public void foo() {
2: if (folder != null)
3: return;

Last buggy/vulnerable

1: public void foo() {
2: if (folder == null)
3: return;

Fixed Revision

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

Format/Aesthetic Changes
If the fixing commit modified a line that underwent at least one format change
after the bug was introduced, the BICs (or VCCs) resulting from blaming these
lines would be false positives, and the real BICs (VCCs) will be false negatives.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Last buggy/vulnerable

1: public void foo() {
2: if (folder == null)
3: return;

1: public void foo() {
2: if (folder != null)
3: return;

Fixed Revision

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

Format/Aesthetic Changes
If the fixing commit modified a line that underwent at least one format change
after the bug was introduced, the BICs (or VCCs) resulting from blaming these
lines would be false positives, and the real BICs (VCCs) will be false negatives.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Last buggy/vulnerable

1: public void foo() {
2: if (folder == null)
3: return;

Revision C

1: public void foo() {
2: if (folder == null) return;

1: public void foo() {
2: if (folder == null)
3: return;

Revision B

1: public void foo() {
2: if (folder != null) return;

Revision A

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

Format/Aesthetic Changes
If the fixing commit modified a line that underwent at least one format change
after the bug was introduced, the BICs (or VCCs) resulting from blaming these
lines would be false positives, and the real BICs (VCCs) will be false negatives.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Revision C

1: public void foo() {
2: if (folder == null) return;

1: public void foo() {
2: if (folder == null)
3: return;

Revision B

1: public void foo() {
2: if (folder != null) return;

Revision A

The commit that
brought A to B is
adding the bug/
vulnerability!

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

Format/Aesthetic Changes
If the fixing commit modified a line that underwent at least one format change
after the bug was introduced, the BICs (or VCCs) resulting from blaming these
lines would be false positives, and the real BICs (VCCs) will be false negatives.

Last buggy/vulnerable

1: public void foo() {
2: if (folder == null)
3: return;

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Revision C

1: public void foo() {
2: if (folder == null) return;

1: public void foo() {
2: if (folder == null)
3: return;

Revision B

1: public void foo() {
2: if (folder != null) return;

Revision A
git blame

C is the last commit
that changed line 2

(false positive),
shadowing B (false

negative)!

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

Format/Aesthetic Changes
If the fixing commit modified a line that underwent at least one format change
after the bug was introduced, the BICs (or VCCs) resulting from blaming these
lines would be false positives, and the real BICs (VCCs) will be false negatives.

Last buggy/vulnerable

1: public void foo() {
2: if (folder == null)
3: return;

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

S. Kim, T. Zimmermann, K. Pan and E. J. Jr. Whitehead, "Automatic Identification of Bug-Introducing Changes," 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE'06), Tokyo, Japan, 2006, pp. 81-90, doi: 10.1109/ASE.2006.23.

SZZ by Kim et al.

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

SZZ by Kim et al.

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame

git diff
+
+
-
-
-

Changed

Lines

Annotated
file(s)

Candidate
BICs

BICs

Last buggy
revisionBug Report

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

Let’s go back to the original SZZ…

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

SZZ by Kim et al.

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame

git diff
+
+
-
-
-

Changed

Lines

Annotated
file(s)

Candidate
BICs

BICs

Last buggy
revisionBug Report

Changes to comments
and blank lines must be
ignored at this stage.

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

SZZ by Kim et al.

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame

git diff
+
+
-
-

Polished
Changed

Lines

Annotated
file(s)

Candidate
BICs

BICs

Last buggy
revisionBug Report

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

SZZ by Kim et al.

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame

git diff
+
+
-
-

Polished
Changed

Lines

Annotated
file(s)

Candidate
BICs

BICs

Last buggy
revisionBug Report

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

If a blamed commit is made of
just format changes (e.g., we
can compare the file revisions
Abstract Syntax Trees), we
must repeat the git blame on
the same line until no more
format changes are found.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

SZZ by Kim et al.

Project Bug
Tracker

Project
History

Fix CommitCommit-issue
Linkage

git blame

git diff
+
+
-
-

Polished
Changed

Lines

Annotated
file(s)

Candidate
BICs

BICs

Last buggy
revisionBug Report

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World
This is surely a good improvement, but there are still some more problems…

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho and A. E. Hassan, "A Framework for Evaluating the Results of the SZZ Approach for Identifying Bug-
Introducing Changes," in IEEE Transactions on Software Engineering, vol. 43, no. 7, pp. 641-657, 1 July 2017, doi: 10.1109/TSE.2016.2616306.

SZZ by da Costa et al.

Basically, it’s a variant of the SZZ by
Kim et al. that ignores merge

commits while traversing the history
with the repeated git blames.

Meta-changes
The set of candidate BICs/VCCs might be made
of commits that do not really modify the source
code, e.g., merge commits, which incorporate

commits from one branch into another.

This is surely a good improvement, but there are still some more problems…

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

Comparison of nine SZZ
variants on 123 OSS projects.

Comparison of five SZZ
variants on ten OSS projects.

Rosa et al.

da Costa et al.

Comparison of four SZZ
variants on two OSS projects.

Rodríguez-Pérez et al.

Many SZZ variants have been proposed over
the years. It is difficult to remember them all or

understand which is better. Luckily, some
studies put things in order.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches
Okay but reusing the algorithms meant for bugs does not work well for VCCs.
Indeed, there are studies explaining how bugs and vulnerabilities differ.

Comparison of pre-release bugs
and post-release vulnerabilities

in Chromium.

Comparison of bug and
vulnerability fixing commits in six

OSS projects.

Camilo et al. Canfora et al.
In-depth analysis of the changes

made in vulnerability fixing
commits in 98 Java projects.

Canfora et al.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches
Okay but reusing the algorithms meant for bugs does not work well for VCCs.
Indeed, there are studies explaining how bugs and vulnerabilities differ.

We need other VCC-specific
techniques!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches

SZZ by Perl et al.

SZZ by Yang et al.

V-SZZ by Bao et al.

Okay but reusing the algorithms meant for bugs does not work well for VCCs.
Indeed, there are studies explaining how bugs and vulnerabilities differ.

We need other VCC-specific
techniques!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches

H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar. 2015. VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assist
Code Audits. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS ’15). https://doi.org/10.1145/2810103.2813604

Documentation files (e.g., README) are ignored.

In addition to the blames on the deleted lines, this
variant also considers the blames on the lines
around the block of new lines.

Okay but reusing the algorithms meant for bugs does not work well for VCCs.
Indeed, there are studies explaining how bugs and vulnerabilities differ.

We need other VCC-specific
techniques!

SZZ by Perl et al.

SZZ by Yang et al.

V-SZZ by Bao et al.

A modified version of the original SZZ but:

In addition to the blames on the deleted lines, this
variant also considers the blames on the lines
around the block of new lines.

A modified version of the original SZZ but:SZZ by Perl et al.

SZZ by Yang et al.

V-SZZ by Bao et al.

Okay but reusing the algorithms meant for bugs does not work well for VCCs.
Indeed, there are studies explaining how bugs and vulnerabilities differ.

We need other VCC-specific
techniques!

Documentation files (e.g., README) are ignored.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches

H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar. 2015. VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assist
Code Audits. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS ’15). https://doi.org/10.1145/2810103.2813604

Blamed

Blamed

int main(int argc, char* argv[]) {
 char buff[65], *temp;
 temp = argv[1] ? argv[1] : "";
 if (argc > 0 && strlen(argv[1]) > 64)
 strcpy(buff, temp);
 printf("%s", "bye");
}

Let us consider a commit that fixes a vulnerability
by adding this line:

Some vulnerabilities are fixed by adding missing checks, e.g.,
an if added before reading from a buffer. Hence, the context around the

new code blocks might be responsible for the vulnerability.

Rationale

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches

H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar. 2015. VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assist
Code Audits. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS ’15). https://doi.org/10.1145/2810103.2813604

A modified version of the original SZZ but:

Documentation files (e.g., README) are ignored.

It returns only the most blamed commit. In case
of a tie, all the commits with the top score are
returned (ex aequo).

Okay but reusing the algorithms meant for bugs does not work well for VCCs.
Indeed, there are studies explaining how bugs and vulnerabilities differ.

We need other VCC-specific
techniques!

SZZ by Perl et al.

SZZ by Yang et al.

V-SZZ by Bao et al.

In addition to the blames on the deleted lines, this
variant also considers the blames on the lines
around the block of new lines.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches

L. Yang, X. Li and Y. Yu, "VulDigger: A Just-in-Time and Cost-Aware Tool for Digging Vulnerability-Contributing Changes," GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Singapore, 2017, pp. 1-7, doi: 10.1109/GLOCOM.2017.8254428.

A modified version of the SZZ by Perl et al. but:

Test and non-C/C++ files are ignored. Changes to
comments, empty lines, and whitespaces are
ignored as well.
For each new line added, the blame around this
line is considered only if it contains a C/C++
keyword or a function call.

Okay but reusing the algorithms meant for bugs does not work well for VCCs.
Indeed, there are studies explaining how bugs and vulnerabilities differ.

We need other VCC-specific
techniques!

SZZ by Perl et al.

SZZ by Yang et al.

V-SZZ by Bao et al.
Unlike the Perl et al. variant, it considers the
blames around blocks of new lines only if they do
not contain new functions.

Unlike the Perl et al. variant, it considers the
blames around blocks of new lines only if they do
not contain new functions.

Test and non-C/C++ files are ignored. Changes to
comments, empty lines, and whitespaces are
ignored as well.

A modified version of the SZZ by Perl et al. but:

For each new line added, if it contains a C/C++
keyword or a function call, it considers the
blames around this line.

SZZ by Perl et al.

SZZ by Yang et al.

V-SZZ by Bao et al.

Okay but reusing the algorithms meant for bugs does not work well for VCCs.
Indeed, there are studies explaining how bugs and vulnerabilities differ.

We need other VCC-specific
techniques!

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches

L. Yang, X. Li and Y. Yu, "VulDigger: A Just-in-Time and Cost-Aware Tool for Digging Vulnerability-Contributing Changes," GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Singapore, 2017, pp. 1-7, doi: 10.1109/GLOCOM.2017.8254428.

Changes to comments, empty lines, and
whitespaces are ignored as well.

Blamed

Blamed

Let us consider a commit that fixes a vulnerability
by adding this line and a new function:

int main(int argc, char* argv[]) {
 char buff[65], *temp;
 temp = argv[1] ? argv[1] : "";
 if (argc > 0 && my_len(argv[1]) > 64)
 strcpy(buff, temp);
 printf("%s", "bye");
}
int my_len(char* buff) {
 return strlen(buff);
}

NOT blamed

Functions can be added anywhere in the file. Hence, the local context
does not always involve meaningful parts.

Rationale

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches

L. Bao, X. Xia, A. E. Hassan and X. Yang, "V-SZZ: Automatic Identification of Version Ranges Affected by CVE Vulnerabilities," 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), Pittsburgh, PA, USA, 2022, pp. 2352-2364, doi: 10.1145/3510003.3510113.

A modified version of the SZZ by Kim et al. but:

The git blame is repeated beyond format
changes until reaching the commits that created
the blamed lines. This approach is supported by
both AST and string similarity matching.

According to certain studies, many vulnerabilities
are foundational, i.e., introduced early in the project,

even before the first release.

Rationale

Okay but reusing the algorithms meant for bugs does not work well for VCCs.
Indeed, there are studies explaining how bugs and vulnerabilities differ.

We need other VCC-specific
techniques!

SZZ by Perl et al.

SZZ by Yang et al.

V-SZZ by Bao et al.

Are we sure
they work?

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

Performance Indicators

False Positives

False Negatives The algorithm did not return one (or more) real VCC.

From the Information Retrieval world, we commonly use these metrics to evaluate such approaches:

“Among the found VCCs, how many are correct?”

“Among the correct VCCs, how many did I find?”

“Trade-off between precision and recall”

Precision = |correct ∩ identified |
| identified |

Recall = |correct ∩ identified |
|correct |

F − measure = 2
1

Precision + 1
Recall

How can we be sure VCC mining algorithms work as expected? We want our algorithm to minimize:

The algorithm returned a commit that was not a real VCC.

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

Performance Indicators

False Positives

False Negatives The algorithm did not return one (or more) real VCC.

From the Information Retrieval world, we commonly use these metrics to evaluate such approaches:

Precision = |correct ∩ identified |
| identified |

Recall = |correct ∩ identified |
|correct |

F − measure = 2
1

Precision + 1
Recall

But how do we determine
this “correct” set?

How can we be sure VCC mining algorithms work as expected? We want our algorithm to minimize:

The algorithm returned a commit that was not a real VCC.

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

Building the Ground Truth
We need to build a ground truth (a.k.a. golden set) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

Exhaustive
Labeling

Precision
Assessment

Developer-
informed Oracle

Bisect-driven
Labeling

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

Building the Ground Truth

For each vulnerability, we manually inspect all the commits in the project and
assess whether it is a VCC. Complete but time-consuming.

we want to be exhaustive (!) or just
want to analyze a few vulnerabilities.

Exhaustive
Labeling

Precision
Assessment

Developer-
informed Oracle

Bisect-driven
Labeling

Recommended when…

We need to build a ground truth (a.k.a. golden set) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

Building the Ground Truth

For each vulnerability, we run git bisect until we find at least one VCC. Inspired
by the Meneely et al. mining technique. Less complete but faster, reducing the

workload by a logarithmic factor.

we don’t need a complete correct set,
and we have time to inspect.

Exhaustive
Labeling

Precision
Assessment

Developer-
informed Oracle

Bisect-driven
Labeling

Recommended when…

We need to build a ground truth (a.k.a. golden set) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

Building the Ground Truth

For each commit flagged as VCC by the algorithm, we inspect it to assess
whether it is a real VCC. This will not produce the correct set, but only correct ∩

identified. Hence, we are not aware of the “missed” VCCs.

we are only interested in assessing
the precision.

Precision
Assessment

Developer-
informed Oracle

Exhaustive
Labeling

Bisect-driven
Labeling

Recommended when…

We need to build a ground truth (a.k.a. golden set) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

Building the Ground Truth

For each vulnerability, we process the fixing commit message to retrieve
mentions of the culprit commit(s). Developers sometimes explicitly indicate the
commit where the vulnerability was introduced. This method has a fully automated

part based on NLP/text mining and an (optional) manual assessment part.

we don’t need a complete correct set
and, we want developers’ experience.

Precision
Assessment

Developer-
informed Oracle

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R. Oliveto. 2021. Evaluating SZZ Implementations Through a Developer-informed Oracle. In
Proceedings of the 43rd International Conference on Software Engineering (ICSE '21). IEEE Press, 436–447. https://doi.org/10.1109/ICSE43902.2021.00049

Exhaustive
Labeling

Bisect-driven
Labeling

Recommended when…

We need to build a ground truth (a.k.a. golden set) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

Building the Ground Truth

Precision
Assessment

Developer-
informed Oracle

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R. Oliveto. 2021. Evaluating SZZ Implementations Through a Developer-informed Oracle. In
Proceedings of the 43rd International Conference on Software Engineering (ICSE '21). IEEE Press, 436–447. https://doi.org/10.1109/ICSE43902.2021.00049

Exhaustive
Labeling

Bisect-driven
Labeling

CVE-2011-5321 (NULL pointer dereference) in Linux Kernel was fixed in commit
c290f835 by just adding a single line of code.

EXAMPLE

1869:
1870:
1871:
1872:
1874:
1875:
1876:
1877:
1878:
1879:

if (!tty) {
 /* check whether we're reopening an existing tty */
 tty = tty_driver_lookup_tty(driver, inode, index);
 if (IS_ERR(tty)) {
 tty_unlock();
 mutex_unlock(&tty_mutex);
 tty_driver_kref_put(driver);
 return PTR_ERR(tty);
 }
}

TTY: drop driver reference in tty_open fail
path
When tty_driver_lookup_tty fails in tty_open,
we forget to drop a reference to the tty
driver. This was added by commit 4a2b5fd
(Move tty lookup/reopen to caller). […]

“

We need to build a ground truth (a.k.a. golden set) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

Building the Ground Truth

Precision
Assessment

Developer-
informed Oracle

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R. Oliveto. 2021. Evaluating SZZ Implementations Through a Developer-informed Oracle. In
Proceedings of the 43rd International Conference on Software Engineering (ICSE '21). IEEE Press, 436–447. https://doi.org/10.1109/ICSE43902.2021.00049

Exhaustive
Labeling

Bisect-driven
Labeling

EXAMPLE

According to the developer who
fixed this vulnerability, this is a

VCC (which involuntarily
introduced the vulnerability while

refactoring some code).

TTY: drop driver reference in tty_open fail
path
When tty_driver_lookup_tty fails in tty_open,
we forget to drop a reference to the tty
driver. This was added by commit 4a2b5fd
(Move tty lookup/reopen to caller). […]

“

We need to build a ground truth (a.k.a. golden set) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

CVE-2011-5321 (NULL pointer dereference) in Linux Kernel was fixed in commit
c290f835 by just adding a single line of code.

How can I
use them?

MSR for Vulnerability Prediction — Tools and Datasets for VCC Mining

Available Tools
OpenSZZ SZZUnleashed

Archeogit

Command-line tool written
in Java implementing the
standard SZZ, analyzing
GitHub repositories and

Jira issues.

V-SZZ PySZZ

PyDriller

Collection of Python and
Java scripts implementing
the SZZ by Williams and

Spacco (not seen).

Collection of Python
scripts replicating V-SZZ

by Bao et al.

Python library for
repository mining,

including an
implementation of SZZ by

Kim et al.

Collection of Python
scripts implementing

several SZZ variants with
a uniform interface.

Command-line tool written
in Python implementing the

SZZ by Perl et al.

Isn't there
something

ready to use?

MSR for Vulnerability Prediction — Tools and Datasets for VCC Mining

Available Datasets
Curated

Mined

Vulnerability
History Project

Java
VCC Dataset

Database of curated histories of 2,677 vulnerabilities of eight open-source
projects. Built by class assignments in a Master’s degree course held at RIT.

Dataset of 100 VCCs of 71 known vulnerabilities affecting popular Java projects.
Built by manually analyzing the history aided by blames on fixing commits.

Secret Life
Dataset

Dataset of 12,256 VCCs of 3,663 vulnerabilities affecting 1,096 open-source
projects. Built by running an SZZ variant by Iannone et al. (not seen).

FrontEndART
Dataset

Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.

Built by running an SZZ variant by Aladics et al.

MSR for Vulnerability Prediction — Tools and Datasets for VCC Mining

Available Datasets

Vulnerability
History Project

Java
VCC Dataset

Curated

Mined

Database of curated histories of 2,677 vulnerabilities of eight open-source
projects. Built by class assignments in a Master’s degree course held at RIT.

Dataset of 100 VCCs of 71 known vulnerabilities affecting popular Java projects.
Built by manually analyzing the history aided by blames on fixing commits.

Secret Life
Dataset

FrontEndART
Dataset

Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.

Built by running an SZZ variant by Aladics et al.

Dataset of 12,256 VCCs of 3,663 vulnerabilities affecting 1,096 open-source
projects. Built by running an SZZ variant by Iannone et al. (not seen).

MSR for Vulnerability Prediction — Tools and Datasets for VCC Mining

Available Datasets
Vulnerability

History Project

Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.

Built by running a SZZ variant by Aladics et al.

MSR for Vulnerability Prediction — Tools and Datasets for VCC Mining

Available Datasets
Curated

Mined

Vulnerability
History Project

Java
VCC Dataset

Database of curated histories of 2,677 vulnerabilities of eight open source projects.

Built by class assignments in a Master degree course held at RIT.
https://vulnerabilityhistory.org/

Dataset of 100 VCCs of 71 known vulnerabilities affecting popular Java projects.

Built by manually analyzing the history aided by blames on fixing commits.

https://tinyurl.com/java-vccs

Secret Life
Dataset

Dataset of 12,256 VCCs of 3,663 vulnerabilities affecting 1,096 open source projects.
Built by running SZZ by Iannone et al.
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle

FrontEndART
Dataset

Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.

Built by running a SZZ variant by Aladics et al.

Vulnerability
History Project

https://vulnerabilityhistory.org/
https://tinyurl.com/java-vccs
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle

Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.

Built by running a SZZ variant by Aladics et al.

MSR for Vulnerability Prediction — Tools and Datasets for VCC Mining

Available Datasets
Curated

Mined

Vulnerability
History Project

Java
VCC Dataset

Database of curated histories of 2,677 vulnerabilities of eight open source projects.

Built by class assignments in a Master degree course held at RIT.
https://vulnerabilityhistory.org/

Dataset of 100 VCCs of 71 known vulnerabilities affecting popular Java projects.

Built by manually analyzing the history aided by blames on fixing commits.

https://tinyurl.com/java-vccs

Secret Life
Dataset

Dataset of 12,256 VCCs of 3,663 vulnerabilities affecting 1,096 open source projects.
Built by running SZZ by Iannone et al.
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle

FrontEndART
Dataset

Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.

Built by running a SZZ variant by Aladics et al.

Vulnerability
History Project

https://vulnerabilityhistory.org/
https://tinyurl.com/java-vccs
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle

Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.

Built by running a SZZ variant by Aladics et al.

MSR for Vulnerability Prediction — Tools and Datasets for VCC Mining

Available Datasets
Curated

Mined

Vulnerability
History Project

Java
VCC Dataset

Database of curated histories of 2,677 vulnerabilities of eight open source projects.

Built by class assignments in a Master degree course held at RIT.
https://vulnerabilityhistory.org/

Dataset of 100 VCCs of 71 known vulnerabilities affecting popular Java projects.

Built by manually analyzing the history aided by blames on fixing commits.

https://tinyurl.com/java-vccs

Secret Life
Dataset

Dataset of 12,256 VCCs of 3,663 vulnerabilities affecting 1,096 open source projects.
Built by running SZZ by Iannone et al.
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle

FrontEndART
Dataset

Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.

Built by running a SZZ variant by Aladics et al.

VHP can be mined in several ways

RESTFul API

Raw Data

Ad Hoc Tool
Retrieving data with simple

HTTP requests.
The organization in GitHub offers
a dedicated command-line tool.

The list of vulnerabilities is
available in a repository of its

organization in GitHub.

Vulnerability
History Project

https://vulnerabilityhistory.org/
https://tinyurl.com/java-vccs
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle

MSR for Vulnerability Prediction — Conclusion

Wrap up

Definition &
Characteristics of VCCs

Meneely et al. technique
(git bisect)

SZZ algorithm and
variants (git blame)

Performance Metrics &
Ground Truth

Available Tools &
Datasets

(Some) Open Challenges
Non-code-related Vulnerabilities

Not all vulnerabilities are caused by coding mistakes. Some of them are
caused by improper configurations or, even worse, design issues.

MSR for Vulnerability Prediction — Conclusion

Tangled Changes
Not all fixing commits are focused on fixing the vulnerability: other

collateral activities may be done.

Irrelevant Changes
Not all lines changed are directly related to the vulnerability, e.g.,

addition/removal of import statements, parameters reordering, etc.

Migrated Repositories
Many “old” projects were migrated from another VCS (e.g., svn to git), so

their history might be incomplete (e.g., the initial commit is enormous).

MSR for Vulnerability Prediction

Emanuele Iannone
SeSa Lab @ University of Salerno, Italy
emaiannone@unisa.it

Master Course “Cybersecurity Data Science”
Winter Semester 22/23

Mining Vulnerability-Contributing Commits

References
Articles (1/2)
[Meneely et al.] When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing
Commits: https://ieeexplore.ieee.org/document/6681339
[Śliwerski et al.] When do changes induce fixes?: https://dl.acm.org/doi/10.1145/1082983.1083147
[Kim et al.] Automatic Identification of Bug-Introducing Changes: https://ieeexplore.ieee.org/document/
4019564
[da Costa et al.] A Framework for Evaluating the Results of the SZZ Approach for Identifying Bug-
Introducing Changes: https://ieeexplore.ieee.org/document/7588121
[Rodríguez-Pérez et al.] How bugs are born: a model to identify how bugs are introduced in software
components: https://link.springer.com/article/10.1007/s10664-019-09781-y
[Rosa et al.] Evaluating SZZ Implementations Through a Developer-informed Oracle: https://dl.acm.org/
doi/10.1109/ICSE43902.2021.00049
[Camilo et al.] Do Bugs Foreshadow Vulnerabilities? A Study of the Chromium Project: https://
ieeexplore.ieee.org/document/7180086

https://ieeexplore.ieee.org/document/6681339
https://dl.acm.org/doi/10.1145/1082983.1083147
https://ieeexplore.ieee.org/document/4019564
https://ieeexplore.ieee.org/document/4019564
https://ieeexplore.ieee.org/document/7588121
https://link.springer.com/article/10.1007/s10664-019-09781-y
https://dl.acm.org/doi/10.1109/ICSE43902.2021.00049
https://dl.acm.org/doi/10.1109/ICSE43902.2021.00049
https://ieeexplore.ieee.org/document/7180086
https://ieeexplore.ieee.org/document/7180086

References
Articles (2/2)
[Canfora et al.] Investigating the vulnerability fixing process in OSS projects: Peculiarities and
challenges: https://www.sciencedirect.com/science/article/abs/pii/S0167404820303400
[Canfora et al.] Patchworking: Exploring the code changes induced by vulnerability fixing activities:
https://www.sciencedirect.com/science/article/abs/pii/S0950584921001932
[Perl et al.] VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assist Code Audits:
https://dl.acm.org/doi/10.1145/2810103.2813604
[Yang et al.] VulDigger: A Just-in-Time and Cost-Aware Tool for Digging Vulnerability-Contributing
Changes: https://ieeexplore.ieee.org/document/8254428
[Iannone et al.] The Secret Life of Software Vulnerabilities: A Large-Scale Empirical Study: https://
ieeexplore.ieee.org/document/9672730
[Bao et al.] V-SZZ: Automatic Identification of Version Ranges Affected by CVE Vulnerabilities: https://
ieeexplore.ieee.org/document/9794006

https://www.sciencedirect.com/science/article/abs/pii/S0167404820303400
https://www.sciencedirect.com/science/article/abs/pii/S0950584921001932
https://dl.acm.org/doi/10.1145/2810103.2813604
https://ieeexplore.ieee.org/document/8254428
https://ieeexplore.ieee.org/document/9672730
https://ieeexplore.ieee.org/document/9672730
https://ieeexplore.ieee.org/document/9794006
https://ieeexplore.ieee.org/document/9794006

References

VHP API: https://vulnerabilityhistory.org/api

VHP command-line tool: https://github.com/VulnerabilityHistoryProject/shepherd-tools
VHP Raw data: https://github.com/VulnerabilityHistoryProject/vulnerabilities

VHP: https://vulnerabilityhistory.org/
Java VCC Dataset: https://tinyurl.com/java-vccs
Secret Life Dataset: https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle

Tools & Datasets

FrontEndART Dataset: https://zenodo.org/record/5785254#.ZGIw9uxBzDK

OpenSZZ: https://github.com/clowee/OpenSZZ
SZZUnleashed: https://github.com/wogscpar/SZZUnleashed
PyDriller: https://github.com/ishepard/pydriller
Archeogit: https://github.com/samaritan/archeogit
V-SZZ: https://github.com/baolingfeng/V-SZZ
PySZZ: https://github.com/grosa1/pyszz

https://vulnerabilityhistory.org/api
https://github.com/VulnerabilityHistoryProject/shepherd-tools
https://github.com/VulnerabilityHistoryProject/vulnerabilities
https://vulnerabilityhistory.org/
https://tinyurl.com/java-vccs
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle
https://zenodo.org/record/5785254#.ZGIw9uxBzDK
https://github.com/clowee/OpenSZZ
https://github.com/wogscpar/SZZUnleashed
https://github.com/ishepard/pydriller
https://github.com/samaritan/archeogit
https://github.com/baolingfeng/V-SZZ
https://github.com/grosa1/pyszz

