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Introduction of a post-release
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Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.
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Example of a VCC

“Cloud Foundry UAA, versions prior to 74.0.0, is vulnerable to an XSS attack. A
remote unauthenticated malicious attacker could craft a URL that contains a SCIM
filter that contains malicious JavaScript, which older browsers may execute.”
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Example of a VCC

“Cloud Foundry UAA, versions prior to 74.0.0, is vulnerable to an XSS attack. A
remote unauthenticated malicious attacker could craft a URL that contains a SCIM
filter that contains malicious JavaScript, which older browsers may execute.”

CWE-79: Improper Neutralization of Input During
Web Page Generation ('Cross-site Scripting')

We expect unescaped or unvalidated data supplied from the
user via URL parameters that end up directly in the response.
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Example of a VCC

. _ Fix

y

a34f55fc

| @RequestMapping(value = {"/Groups"}, method = RequestMethod.GET)
@ResponseBody
‘ public SearchResults<?> 1listGroups(
| RequestParam(value = "attributes”, required
RequestParam(requirec ' ' '
RequestParam(requireoc
RequestParam(required
RequestParam(requirec false, defaultValue
RequestParam(requirec false, defaultValue
1T (count > groupMaxCount) {

count = groupMaxCount;

false) String attributesCommaSeparated,
"id pr") String filter,

"created") String sortBy,

"ascending") String sortOrder,

"1") 1nt startIndex,

"100") 1nt count) {

false, defaultValue
false, defaultValue
false, defaultValue
0
0

;

List<ScimGroup> result;
try {
result = dao.query(filter, sortBy, "ascending".equalslgnoreCase(sortOrder),
identityZoneManager.getCurrentIdentityZoneld());
} catch (IllegalArgumentException e) {
throw new ScimException("Invalid filter expression: [" + filter + "]",
HttpStatus.BAD REQUEST) ;
throw new ScimkException("Invalid filter expression: [" + HtmlUtils.htmlEscape(filter) + "]",
HttpStatus.BAD REQUEST) ;
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Example of a VCC

_ )¢
a34f55fc

@RequestParam(required = false, defaultValue = "id pr") String filter,

Essentially, the fi1lter parameter is not
sanitized and is placed directly In this
ScimException. Then, this exeption
message Is placed verbatim on an error page.

throw new ScimkException("Invalid filter expression: [" + filter + "]", ‘
HttpStatus.BAD_REQUEST) ;

throw new ScimException("Invalid filter expression: [" + HtmlUtils.htmlEscape(filter) + "]",
HttpStatus.BAD REQUEST) ;
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Example of a VCC

_ )¢
a34f55fc

@RequestParam(required = false, defaultValue = "id pr") String filter,

Let’s go back in time to find the commit
that contributed to this problem!

throw new ScimkException("Invalid filter expression: [" + filter + "]", ‘
HttpStatus.BAD_REQUEST) ;

throw new ScimException("Invalid filter expression: [" + HtmlUtils.htmlEscape(filter) + "]",
HttpStatus.BAD REQUEST) ;
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Example of a VCC

- | | VCC

bb8ff8f4

@RequestMapping(value = { "/Groups/External/list" }, method = RequestMethod.GET)
@ResponseBody

public SearchResults<?> listExternalGroups(

| @RequestParam(required = false, defaultValue "1") 1nt startIndex,

@RequestParam(required false, defaultValue "100") 1nt count) {
String filter = "";

’

List<ScimGroupExternalMember> result;
try {
result = externalMembershipManager.query(filter);

} catch (IllegalArgumentException e) {

throw new ScimkException("Invalid filter expression: [" + filter + "]",
HttpStatus.BAD REQUEST) ;

. ]
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Example of a VCC

/ ) _ | _ VCC

bb8ff8f4

' @RequestMapping(value = { "/Groups/External/list" }, method = RequestMethod.GET)
@ResponseBody

public SearchResults<?> listExternalGroups(

@RequestParam(required false, defaultValue "1") 1nt startlndex,

@RequestParam(required false, defaultValue "100") 1nt count) {
String filter = "";

List<ScimGroupExternalMember> result;
try {

result = externalMembershipManager.query(filter);
} catch (IllegalArgumentException e) {

throw new ScimkException("Invalid filter expression: [" + filter + "]",
HttpStatus.BAD REQUEST) ;
;

[...]

This was the first revision where the filter
parameters was put inside the exception
message: the vulnerablility was there since the
method (with a different name) was born.
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Abstract—Security is a harsh reality for software teams today.
Developers must engineer secure software by preventing
vulnerabilities, which are design and coding mistakes that have
security consequences. Even in open source projects, vulnerable
source code can remain unnoticed for years. In this paper, we
traced 68 vulnerabilities in the Apache HTTP server back to the
version control commits that contributed the vulnerable code
originally. We manually found 124 Vulnerability-Contributing
Commits (VCCs), spanning 17 years. In this exploratory study,
we analyzed these VCCs quantitatively and qualitatively with the
over-arching question: “What could developers have looked for
to identify security concerns in this commit?” Specifically, we
examined the size of the commit via code churn metrics, the
amount developers overwrite each others’ code via interactive
churn mefrics, exposure time between VCC and fix, and
dissemination of the VCC to the development community via
release notes and voting mechanisms. Our results show that
VCCs are large: more than twice as much code churn on average
than non-VCCs, even when normalized against lines of code.
Furthermore, a commit was twice as likely to be a VCC when the
author was a new developer to the source code. The insight from
this study can help developers understand how vulnerabilities
originate in a system so that security-related mistakes can be
prevented or caught in the future.

Index Terms— vulnerability, churn, socio-technical, empirical.

I. INTRODUCTION

Security is a harsh reality for software teams today.
Insecure software is not only expensive to maintain, but can
cause immeasurable damage to a brand, or worse, to the
livelihood of customers, patients, and citizens.

To software developers, the key to secure software lies in
preventing vulnerabilities. Software vulnerabilities are special
types of “faults that violate an [implicit or explicit] security
policy” [1]. If developers want to find and fix vulnerabilities
they must focus beyond making the system work as specified
and prevent the system’s functionality from being abused.
According to security experts [2]-[4], finding vulnerabilities
requires expertise in both the specific product and in software
security in general.

The field of engineering secure software has a plethora of
security practices for finding vulnerabilities, such as threat
modeling, penetration testing, code inspections, misuse and

abuse cases [5], and automated static analysis [2]-{4]. While
these practices have been shown to be effective, they can also
be inefficient. Development teams are then faced with the
challenge of prioritizing their fortification efforts within the
entire development process. Developers might know what is
possible, but lack a firm grip on what is probable. As a result,
an uninformed development team can easily focus on the
wrong areas for fortification.

Fortunately, an historical, longitudinal analysis of how
vulnerabilities originated in professional products can inform
fortification prioritization. Understanding the specific trends of
how vulnerabilities can arise in a software development
product can help developers understand where to look and what
to look for in their own product. Some of these trends have
been quantified in vulnerability prediction [6]-[10] studies
using metrics aggregated at the file level, but little has been
done to explore the original coding mistakes that contributed
the wulnerabilities in the first place. In this study, we have
identified and analyzed original coding mistakes as
Vulnerability-Contributing Commits (VCCs), or commits in
the version control repository that contributed to the
introduction of a post-release vulnerability.

A myriad of factors can lead to the introduction and lack of
detection of vulnerabilities. A developer may make a single
massive change to the system, leaving his peers with an
overwhelmingly large review. Furthermore, a developer may
make small, incremental changes, but his work might be
affecting the work of many other developers. Or, a developer
may forget to disseminate her work in the change notes and so
the code may miss out on be reviewed entirely.

The objective of this research is to improve software
security by analyzing the size, interactive churn, and
community dissemination of VCCs. We conducted an empirical
case study of the Apache HTTP Server project (HTTPD).
Using a multi-researcher, cross-validating, semi-automated,
semi-manual process, we identified the VCCs for each known
post-release vulnerability in HTTPD. To explore commit size,
we analyzed three code churn metrics. Interactive churn is a
suite of five recently-developed [6] socio-technical variants of
code chum metrics that measure the degree to which
developers’ changes overwrite each others’ code at the line
level. To explore community dissemination, we analyzed the

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

The core idea behind VCCs is not new to the MSR world, and stems the
from research on traditional bugs.
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To software developers, the key to secure software lies in
preventing vulnerabilities. Software vulnerabilities are special
types of “faults that violate an [implicit or explicit] security
policy” [1]. If developers want to find and fix vulnerabilities
they must focus beyond making the system work as specified
and prevent the system’s functionality from being abused.
According to security experts [2]-[4], finding vulnerabilities
requires expertise in both the specific product and in software
security in general.
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abuse cases [5], and automated static analysis [2]-{4]. While
these practices have been shown to be effective, they can also
be inefficient. Development teams are then faced with the
challenge of prioritizing their fortification efforts within the
entire development process. Developers might know what is
possible, but lack a firm grip on what is probable. As a result,
an uninformed development team can easily focus on the
wrong areas for fortification.

Fortunately, an historical, longitudinal analysis of how
vulnerabilities originated in professional products can inform
fortification prioritization. Understanding the specific trends of
how vulnerabilities can arise in a software development
product can help developers understand where to look and what
to look for in their own product. Some of these trends have
been quantified in vulnerability prediction [6]-[10] studies
using metrics aggregated at the file level, but little has been
done to explore the original coding mistakes that contributed
the wulnerabilities in the first place. In this study, we have
identified and analyzed original coding mistakes as
Vulnerability-Contributing Commits (VCCs), or commits in
the version control repository that contributed to the
introduction of a post-release vulnerability.

A myriad of factors can lead to the introduction and lack of
detection of vulnerabilities. A developer may make a single
massive change to the system, leaving his peers with an
overwhelmingly large review. Furthermore, a developer may
make small, incremental changes, but his work might be
affecting the work of many other developers. Or, a developer
may forget to disseminate her work in the change notes and so
the code may miss out on be reviewed entirely.

The objective of this research is to improve software
security by analyzing the size, interactive churn, and
community dissemination of VCCs. We conducted an empirical
case study of the Apache HTTP Server project (HTTPD).
Using a multi-researcher, cross-validating, semi-automated,
semi-manual process, we identified the VCCs for each known
post-release vulnerability in HTTPD. To explore commit size,
we analyzed three code churn metrics. Interactive churn is a
suite of five recently-developed [6] socio-technical variants of
code chum metrics that measure the degree to which
developers’ changes overwrite each others’ code at the line
level. To explore community dissemination, we analyzed the
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version control commits that contributed the vulnerable code
originally. We manually found 124 Vulnerability-Contributing
Commits (VCCs), spanning 17 years. In this exploratory study,
we analyzed these VCCs quantitatively and qualitatively with the
over-arching question: “What could developers have looked for
to identify security concerns in this commit?” Specifically, we
examined the size of the commit via code churn metrics, the
amount developers overwrite each others’ code via interactive
churn mefrics, exposure time between VCC and fix, and
dissemination of the VCC to the development community via
release notes and voting mechanisms. Our results show that
VCCs are large: more than twice as much code churn on average
than non-VCCs, even when normalized against lines of code.
Furthermore, a commit was twice as likely to be a VCC when the
author was a new developer to the source code. The insight from
this study can help developers understand how vulnerabilities
originate in a system so that security-related mistakes can be
prevented or caught in the future.

Index Terms— vulnerability, churn, socio-technical, empirical.

I. INTRODUCTION

Security is a harsh reality for software teams today.
Insecure software is not only expensive to maintain, but can
cause immeasurable damage to a brand, or worse, to the
livelihood of customers, patients, and citizens.

To software developers, the key to secure software lies in
preventing vulnerabilities. Software vulnerabilities are special
types of “faults that violate an [implicit or explicit] security
policy” [1]. If developers want to find and fix vulnerabilities
they must focus beyond making the system work as specified
and prevent the system’s functionality from being abused.
According to security experts [2]-[4], finding vulnerabilities
requires expertise in both the specific product and in software
security in general.

The field of engineering secure software has a plethora of
security practices for finding vulnerabilities, such as threat
modeling, penetration testing, code inspections, misuse and

abuse cases [5], and automated static analysis [2]-{4]. While
these practices have been shown to be effective, they can also
be inefficient. Development teams are then faced with the
challenge of prioritizing their fortification efforts within the
entire development process. Developers might know what is
possible, but lack a firm grip on what is probable. As a result,
an uninformed development team can easily focus on the
wrong areas for fortification.

Fortunately, an historical, longitudinal analysis of how
vulnerabilities originated in professional products can inform
fortification prioritization. Understanding the specific trends of
how vulnerabilities can arise in a software development
product can help developers understand where to look and what
to look for in their own product. Some of these trends have
been quantified in vulnerability prediction [6]-[10] studies
using metrics aggregated at the file level, but little has been
done to explore the original coding mistakes that contributed
the wulnerabilities in the first place. In this study, we have
identified and analyzed original coding mistakes as
Vulnerability-Contributing Commits (VCCs), or commits in
the version control repository that contributed to the
introduction of a post-release vulnerability.

A myriad of factors can lead to the introduction and lack of
detection of vulnerabilities. A developer may make a single
massive change to the system, leaving his peers with an
overwhelmingly large review. Furthermore, a developer may
make small, incremental changes, but his work might be
affecting the work of many other developers. Or, a developer
may forget to disseminate her work in the change notes and so
the code may miss out on be reviewed entirely.

The objective of this research is to improve software
security by analyzing the size, interactive churn, and
community dissemination of VCCs. We conducted an empirical
case study of the Apache HTTP Server project (HTTPD).
Using a multi-researcher, cross-validating, semi-automated,
semi-manual process, we identified the VCCs for each known
post-release vulnerability in HTTPD. To explore commit size,
we analyzed three code churn metrics. Interactive churn is a
suite of five recently-developed [6] socio-technical variants of
code chum metrics that measure the degree to which
developers’ changes overwrite each others’ code at the line
level. To explore community dissemination, we analyzed the

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

The core idea behind VCCs is not new to the MSR world, and stems the
from research on traditional bugs.

Fix-inducing Change

Bug-introducing Change
Bug-injecting Change

Bug-inducing Change

Meneely et al. argued about the term “fix-inducing”, which can be
translated into “persuade to fix (the bug)”. In their view, a VCC does not
persuade developers to fix the vulnerabillity... the vulnerability is fixed after
its discovery, not because of a flawed commit!
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source code can remain unnoticed for years. In this paper, we
traced 68 vulnerabilities in the Apache HTTP server back to the
version control commits that contributed the vulnerable code
originally. We manually found 124 Vulnerability-Contributing
Commits (VCCs), spanning 17 years. In this exploratory study,
we analyzed these VCCs quantitatively and qualitatively with the
over-arching question: “What could developers have looked for
to identify security concerns in this commit?” Specifically, we
examined the size of the commit via code churn metrics, the
amount developers overwrite each others’ code via interactive
churn mefrics, exposure time between VCC and fix, and
dissemination of the VCC to the development community via
release notes and voting mechanisms. Our results show that
VCCs are large: more than twice as much code churn on average
than non-VCCs, even when normalized against lines of code.
Furthermore, a commit was twice as likely to be a VCC when the
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I. INTRODUCTION

Security is a harsh reality for software teams today.
Insecure software is not only expensive to maintain, but can
cause immeasurable damage to a brand, or worse, to the
livelihood of customers, patients, and citizens.

To software developers, the key to secure software lies in
preventing vulnerabilities. Software vulnerabilities are special
types of “faults that violate an [implicit or explicit] security
policy” [1]. If developers want to find and fix vulnerabilities
they must focus beyond making the system work as specified
and prevent the system’s functionality from being abused.
According to security experts [2]-[4], finding vulnerabilities
requires expertise in both the specific product and in software
security in general.

The field of engineering secure software has a plethora of
security practices for finding vulnerabilities, such as threat
modeling, penetration testing, code inspections, misuse and

abuse cases [5], and automated static analysis [2]-{4]. While
these practices have been shown to be effective, they can also
be inefficient. Development teams are then faced with the
challenge of prioritizing their fortification efforts within the
entire development process. Developers might know what is
possible, but lack a firm grip on what is probable. As a result,
an uninformed development team can easily focus on the
wrong areas for fortification.

Fortunately, an historical, longitudinal analysis of how
vulnerabilities originated in professional products can inform
fortification prioritization. Understanding the specific trends of
how vulnerabilities can arise in a software development
product can help developers understand where to look and what
to look for in their own product. Some of these trends have
been quantified in vulnerability prediction [6]-[10] studies
using metrics aggregated at the file level, but little has been
done to explore the original coding mistakes that contributed
the wulnerabilities in the first place. In this study, we have
identified and analyzed original coding mistakes as
Vulnerability-Contributing Commits (VCCs), or commits in
the version control repository that contributed to the
introduction of a post-release vulnerability.

A myriad of factors can lead to the introduction and lack of
detection of vulnerabilities. A developer may make a single
massive change to the system, leaving his peers with an
overwhelmingly large review. Furthermore, a developer may
make small, incremental changes, but his work might be
affecting the work of many other developers. Or, a developer
may forget to disseminate her work in the change notes and so
the code may miss out on be reviewed entirely.

The objective of this research is to improve software
security by analyzing the size, interactive churn, and
community dissemination of VCCs. We conducted an empirical
case study of the Apache HTTP Server project (HTTPD).
Using a multi-researcher, cross-validating, semi-automated,
semi-manual process, we identified the VCCs for each known
post-release vulnerability in HTTPD. To explore commit size,
we analyzed three code churn metrics. Interactive churn is a
suite of five recently-developed [6] socio-technical variants of
code chum metrics that measure the degree to which
developers’ changes overwrite each others’ code at the line
level. To explore community dissemination, we analyzed the

MSR for Vulnerability Prediction — Vulnerability-contributing Commits

The core idea behind VCCs is not new to the MSR world, and stems the
from research on traditional bugs.

Fix-inducing Change

Bug-introducing Change
Bug-injecting Change

Bug-inducing Change

Meneely et al. argued about the term “fix-inducing”, which can be
translated into “persuade to fix (the bug)”. In their view, a VCC does not
persuade developers to fix the vulnerabillity... the vulnerability is fixed after
its discovery, not because of a flawed commit!

Long story short: as long as we all agree, it makes no

real) difference.
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Main Uses of VCCs

Train Vulnerability
Prediction Models

We can build a just-in-time Understand how vulnerabillities are
vulnerability prediction model if Recover Vulnerable progressively introduced in the
the dataset is made of VCCs and Versions/Releases code, drawing out interesting facts.

non-VCCs.

VCCs can help understand which
project releases are affected by the
vulnerability.

Expand the Knowledge
on Vulnerabilities




MSR for Vulnerability Prediction — Vulnerability-contributing Commits

Key Characteristics of VCCs

VCCs vs non-VCCs
A case study on Apache HTTP Server with 68 post-release vulnerabilities and 124 VCCs.
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Developers must engineer secure software by preventing
vulnerabilities, which are design and coding mistakes that have
security consequences. Even in open source projects, vulnerable
source code can remain unnoticed for years. In this paper, we
traced 68 vulnerabilities in the Apache HTTP server back to the
version control commits that contributed the vulnerable code
originally. We manually found 124 Vulnerability-Contributing
Commits (VCCs), spanning 17 years. In this exploratory study,
we analyzed these VCCs quantitatively and qualitatively with the
over-arching question: “What could developers have looked for
to identify security concerns in this commit?” Specifically, we
examined the size of the commit via code churn metrics, the
amount developers overwrite each others’ code via interactive
churn metrics, exposure time between VCC and fix, and
dissemination of the VCC to the development community via
release notes and voting mechanisms. Our results show that
VCCs are large: more than twice as much code churn on average
than non-VCCs, even when normalized against lines of code.
Furthermore, a commit was twice as likely to be a VCC when the
author was a new developer to the source code. The insight from
this study can help developers understand how vulnerabilities
originate in a system so that security-related mistakes can be
prevented or caught in the future.
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I. INTRODUCTION

Security is a harsh reality for sofiware teams today.
Insecure software is not only expensive to maintain, but can
cause immeasurable damage to a brand, or worse, to the
livelihood of customers, patients, and citizens.

To software developers, the key to secure software lies in
preventing vulnerabilities. Software vulnerabilities are special
types of “faults that violate an [implicit or explicit] security
policy” [1]. If developers want to find and fix vulnerabilities
they must focus beyond making the system work as specified
and prevent the system’s functionality from being abused.
According to security experts [2]-[4], finding vulnerabilities
requires expertise in both the specific product and in software
security in general.

The field of engineering secure software has a plethora of
security practices for finding vulnerabilities, such as threat
modeling, penetration testing, code inspections, misuse and
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abuse cases [5], and automated static analysis [2]-{4]. While
these practices have been shown to be effective, they can also
be inefficient. Development teams are then faced with the
challenge of prioritizing their fortification efforts within the
entire development process. Developers might know what is
possible, but lack a firm grip on what is probable. As a result,
an uninformed development team can easily focus on the
wrong areas for fortification.

Fortunately, an historical, longitudinal analysis of how
vulnerabilities originated in professional products can inform
fortification prioritization. Understanding the specific trends of
how vulnerabilities can arise in a software development
product can help developers understand where to look and what
to look for in their own product. Some of these trends have
been quantified in vulnerability prediction [6]-[10] studies
using metrics aggregated at the file level, but little has been
done to explore the original coding mistakes that contributed
the wvulnerabilities in the first place. In this study, we have
identified and analyzed original coding mistakes as
Vulnerability-Contributing Commits (VCCs), or commits in
the version control repository that contributed to the
introduction of a post-release vulnerability.

A myriad of factors can lead to the introduction and lack of
detection of vulnerabilities. A developer may make a single
massive change to the system, leaving his peers with an
overwhelmingly large review. Furthermore, a developer may
make small, incremental changes, but his work might be
affecting the work of many other developers. Or, a developer
may forget to disseminate her work in the change notes and so
the code may miss out on be reviewed entirely.

The objective of this research is to improve software
security by analyzing the size, interactive churn, and
community dissemination of VCCs. We conducted an empirical
case study of the Apache HTTP Server project (HTTPD).
Using a multi-researcher, cross-validating, semi-automated,
semi-manual process, we identified the VCCs for each known
post-release vulnerability in HTTPD. To explore commit size,
we analyzed three code churn metrics. Interactive churn is a
suite of five recently-developed [6] socio-technical variants of
code chum metrics that measure the degree to which
developers’ changes overwrite each others’ code at the line
level. To explore community dissemination, we analyzed the

) computer
society

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on May 04,2023 at 13:28:42 UTC from IEEE Xplore. Restrictions apply.

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.




MSR for Vulnerability Prediction — Vulnerability-contributing Commits

Key Characteristics of VCCs

VCCs vs non-VCCs
A case study on Apache HTTP Server with 68 post-release vulnerabilities and 124 VCCs.

oo e
Size matters

»

C M-

VCCs change x10 more lines of code than non-VCCs.
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VCCs are made by new authors in 15% more cases than non-VCCs.
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VCCs affect existing files in 87% of the cases rather than new files.
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Large commits might increase the chance of
contributing to a vulnerability.

Changing other developers' code might increase the
chance of contributing to a vulnerabillity.

Vulnerabillities are more likely to be added when
modifying existing files rather than creating new files.
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

& Za
———

Post-release Fixing

vulnerability commit(s)

We assume the vulnerabillity is already
mapped to its fixing commits.
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

Post-release Fixing Manual
vulnerability commit(s) analysis

One (or more) inspectors examine(s) the patch
and its context to find the vulnerable code
elements (statements). All the fixing commits
are analyzed as one single big commit.
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

Post-release Fixing Manual
vulnerability commit(s) analysis detection script

Detecting the vulnerable code elements is
supported by a regex-based string
search crafted by the inspector(s). This
script is continuously updated until the
vulnerability is fully understood.



MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

Post-release Fixing Manual ~—~— Ad hoc
vulnerability commit(s) analysis detection script
At the end of the manual analysis, we expect the A

script to be able to automatically find the vulnerable % A

code regions in the last vulnerable revision (the

one just before the first fixing commit). Vulnerable code

regions (Hunks)
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

Post-release Fixing Manual Ad hoc
vulnerability commit(s) analysis detection script

Git bisect is run to find the culprit vulnerability-
contributing commit. This command helps to
find the commit we are looking for (the VCC).

A
g1t bisect | «— %é

Assisted
binary search Vulnerable code

regions (Hunks)
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

1st fix commit

} time

- O O O O O O O O O+
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

1st fix commit g1t checkout ‘

} time

_—
O

| ast vulnerable
revision
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

1st fix commit g1t checkout ‘

/‘ git bisect start
time
O —————————————— S

| ast vulnerable
revision

This will start our procedure. The first thing we
must do is flag a commit that we are sure is
vulnerable. That is, this one!
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

1st fix commit g1t checkout ‘

/‘ git bisect start
time
| | . git bisect bad

| ast vulnerable
revision

This will set the last vulnerable version as the “upper
bound” of the process. Now, we have to look for the “lower
bound”. The project start can be a good candidate.
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

1t bisect .
& 1st fix commit g1t checkout ‘

/‘ git bisect start
time
| | | . git bisect bad

* O

Project initial Last vulnerable
commi revision

g1t bisect good

The main process starts now. Git will select a commit
In the middle, on which we are automatically checked
out so that we can inspect it.
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

*

Project initial
commi

1st fix commit

g1t checkout ‘

/‘ git bisect start
time
| | | | . git bisect bad

A O

| ast vulnerable
revision

g1t bisect good
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

1st fix commit g1t checkout ‘

/‘ git bisect start
time
| | | | . git bisect bad

* A

Project initial T Last vulnerable
commi revision

=i

Instead of doing another manual inspection, we just
ran the detection script prepared before.

g1t bisect good
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

Project initial
commi

1st fix commit g1t

Last vulnerable
revision g9t

Let’s assume the script said this commit does not
have the vulnerability: this is a “good” commit.

checkout ‘

bisect start
bisect bad
bisect good

bisect good
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

*

Project initial
commi

1st fix commit

} time

| ast vulnerable
revision

g1t

git

S F— e S

A

g1t

git

checkout ‘

bisect start
bisect bad
bisect good

bisect good
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

*

Project initial
commi

1st fix commit

} time

T | ast vulnerable

o revision
a

g1t

git

S F— e S

A

g1t

git

checkout ‘

bisect start
bisect bad
bisect good

bisect good
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Now let’'s see how we can retrieve VCCs from project histories.
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Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.
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1st fix commit
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

*

Project initial
commi

1st fix commit

} time

Ame
=i

| ast vulnerable
revision
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

1st fix commit g1t checkout ‘

/‘ git bisect start
time
| | | | | | . git bisect bad

A

*

Project initial Last vulnerable
commi revision git bisect good

g1t bisect good

g1t bisect bad

g1t bisect bad
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

g1t bisect

1st fix commit g1t checkout ‘

/‘ git bisect start
time
| | | | | | . git bisect bad

*

Project initial

g1t bisect good
Last vulnerable

commi PoteTntiaI revision git bisect good

vCC g1t bisect bad

When no more revisions are left, the last commitwe | 81t bisect Dbad

have flagged as “bad” is our candidate VCC!
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

Post-release Fixing Manual ~—~— Ad hoc
vulnerability commit(s) analysis detection script
The obtained VCC is re-inspected to assess
whether it is the real VCC of this vulnerability.
b A
<¥ «— | g1t bisect | «— %é
VCC? Assisted
binary search Vulnerable code

regions (Hunks)
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

Post-release Fixing Manual ~—~— Ad hoc

vulnerability commit(s) analysis detection script

If the inspector believes
this is not the real VCC,
the detection script is
updated, and the bisect
process starts again.

“mmbh, not
convinced”
‘ Updated script ‘
anh

<¥ «— | git bisect | «— %é
VC(C? Assisted

binary search Vulnerable code
regions (Hunks)
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Mining VCCs: A First Approach

Now let’'s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

Post-release Fixing Manual ~—~— Ad hoc
vulnerability commit(s) analysis detection script
“mmh, not
convinced” *
‘ Updated script ‘
T “L GTM” T . . A X
— «—— | git bisect | «— %
VCC VCC? Assisted
binary search Vulnerable code

regions (Hunks)
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Mining VCCs: Borrowing from the Bug World

Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

Sliwerski, Zimmermann, Zeller (SZ2)

J. Sliwerski, T. Zimmermann, and A. Zeller. 2005. When do changes induce fixes? In Proceedings of the 2005 international workshop on Mining software repositories (MSR
'05). Association for Computing Machinery, New York, NY, USA, 1-5. https://doi.org/10.1145/1083142.1083147
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/ﬁ The original approach relies on Bugzilla, but we
- can mine any bug tracker or similar database.
Project Bug

Tracker
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Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

Sliwerski, Zimmermann, Zeller (SZ2)

=

&

-
Project Bug
Tracker
0 The original approach relies on CVS (Concurrent
Project Versioning System), but here we consider git.

History
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Mining VCCs: Borrowing from the Bug World

Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

Sliwerski, Zimmermann, Zeller (SZ2)

ﬁ = We pick a bug report for which we want to know

- its bug-inducing commits (BICs)
Project Bug 7 7 .

Tracker Bug Report

\¢

Project
History
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Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

Sliwerski, Zimmermann, Zeller (SZ2)

=

g C

-
Project Bug
Tracker Bug Report
0 } We can run any commit-issue link algorithm we want. The
Project Commit-issue Fix Commit original approach uses a pat.tern-based sgarch, looking
. . for the bug ID (a number) inside the commit messages. In
History Linkage

any case, we just want the bug-fixing commit.
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Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

Sliwerski, Zimmermann, Zeller (SZ2)

=

g C

.
Project Bug
Tracker Bug Report
0 ' ' } ' git diff The git diff allows the retrieval of
. — . . the lines changed (added and
- Fix Commit
Project Commit-issue deleted) in the files modified in the
History Linkage

fixing commit.
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Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

Sliwerski, Zimmermann, Zeller (SZ2)

=

S als
? S ‘ We go back to the previous commit, which
Project Bug Last buggy | W€ assume IS the last revision with the bug.

Tracker Bug Report revision

l T
0—’—'/‘—> git diff _»1&

Project Commit-issue  Fix Commit Cr;anged
History Linkage Lines
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Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

Sliwerski, Zimmermann, Zeller (SZ2)

=

\ sl
? — ® — g1t blame
Project Bug Last buggy
Tracker Bug Report revision

This is the core of the technique. The blame function
(or annotate, the legacy version) marks each line of
a file with the last commit that modified it.

N
‘)—»—»/‘—» git diff | —— || —

Project Commit-issue  Fix Commit Cr;anged
History Linkage Lines
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| CSVParser.java

Code 823 lines (759 . 29.2 KB Raw 00 & 2 ~

Older m)) A Contributors 10

| years ago ,;‘(,' [CSV-239] Add CSVRecord.ge... private Headers createHeaders() throws IOException {
A years ago [CSV-239] Cannot get headers ... Map<String, Integer> hdrMap = null;

A years ago ;{ [CSV-239] Add CSVRecord.ge... List<String> headerNames = null;

4 years ago [CSV-239] Cannot get headers ... final String[] formatHeader = this.format.getHeader();
if (formatHeader !'= null) {

A years ago [CSV-239] Cannot get headers ... hdrMap = createEmptyHeaderMap();

| years ago [CSV-239] Cannot get headers ... String[] headerRecord = null;
if (formatHeader.length == 0) {

// read the header from the first line of the file
final CSVRecord nextRecord = this.nextRecord();
if (nextRecord != null) {

headerRecord = nextRecord.values();

8 months ago [CSV-304] Accessors for hea... headerComment = nextRecord.getComment();

4 years ago [CSV-239] Cannot get headers ... b
} else {

if (this.format.getSkipHeaderRecord()) {

Guard against NPE in createH... final CSVRecord nextRecord = this.nextRecord();
if (nextRecord != null) {
headerComment = nextRecord.getComment();

4 years ago [CSV-239] Cannot get headers ... b
headerRecord = formatHeader;

}

// build the name to index mappings
if (headerRecord != null) {
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Sliwerski, Zimmermann, Zeller (SZ2)

. P AN . _
s - ‘ — [git blame| — ; Here, git blame_ls
Project Bug | ast buggy / run on all fche files
Tracker Bug Report evision Annotated | modified in the
file(s) fixing commit.
Let’s assume it was
only just one.
D
‘)—»—»/‘—» git diff | —— | —
Project Commit-issue  Fix Commit Cr;an_ged

History Linkage Lines
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Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.

Let’s go back a couple of years: 2005!

Sliwerski, Zimmermann, Zeller (SZ2)

2 ‘ — > |git blame| — |/
Tracker Bug Report revision Annotated
l I file(s)
D
‘)—»—»/‘—» oit diff | — || —
Project Commit-issue  Fix Commit CH EE o

History Linkage

Lines

AN

[
O
A

By intersecting
these results, we
obtain the set of
commits that
created the lines
deleted In the
fixing commit.
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Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

Sliwerski, Zimmermann, Zeller (SZ2)

- P D
Ay — ‘ —> |git blame| — [/ — |
Project Bug Last buggy £ 2
Tracker Bug Report evision Annotated l
file(s) D A
l I Candidate
N BICs
0 — > — } — | git diff | — |I——
| | E— We discard the
Project Commit-issue  Fix Commit Changed | commits made after
History Linkage Lines the bug was

reported.
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Sliwerski, Zimmermann, Zeller (SZ2)

- put B
L @ — [git blame 7 :
Project Bug Last buggy £ -
Tracker Bug Report revision Annotatec l
file(s) D A
l I Candidate
AN BICs
O — [~ —mmwm—[F
Project Commit-issue  Fix Commit Cr;an_ ed
History Linkage Linegs .BICS.
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Meneely et al.’s technique doesn’t scale: it’'s manual and time-consuming. We need a fully-automated solution.
Let’s go back a couple of years: 2005!

. | l/o
Sliwerski, Zimmermann, Zeller (SZZ) IQS‘

\ e P
!‘ﬁ — gl ‘ — |git blame| —> |/ —

AN

[
O
A

NN\

V_ulnerability Last vulnerable .
Tracker Vuinerability revision Annotated l
Report I file(s) D A

l Candidate
> A VCCs

Q}—»—»/‘—» git diff | —— [[— |

Project Commit-issue  Fix Commit Cr;an_ ed

History Linkage Linegs Ec(g
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p— e == == _ B _ N

— — =

o " Comments and Blank Lines

|

If the fixing commit also modified an existing comment or removed a blank line,
| the BICs (or VCCs) resulting from blaming these lines would be false positives: they|
made no real contribution to the bug.
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_ - . = = = — —N

If the fixing commit also modified an existing comment or removed a blank line,
| the BICs (or VCCs) resulting from blaming these lines would be false positives: they|

made no real contribution to the bug.

— = p—e— = ’ — — —————— — = — - . - P S ——

levision

. public void foo() { [ 1: public void foo() {
// print report 2 // print out report
if (report == null) 3 if (report != null)

{ B 4: {
println(report); 5 println(report);
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_ - . = = = — —N

If the fixing commit also modified an existing comment or removed a blank line,
| the BICs (or VCCs) resulting from blaming these lines would be false positives: they|

made no real contribution to the bug.

evision
_ . public void foo() { W 1: public void foo() {
Two IlneS.Changed, '2: // print report W 2: // print out report
one was just . if (report == null) " 3: if (report !'= null)

deleted. 4 A - IR
; println(report); D printin(report);
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_ - . = = = — —N

If the fixing commit also modified an existing comment or removed a blank line,
| the BICs (or VCCs) resulting from blaming these lines would be false positives: they|

made no real contribution to the bug.

evision
@ o [ 1: public void foo() { W 1: public void foo() {
Commit adding the “print <& ——_ §BE // print report N 2 // print out report

report” comment ; if (report == null) 3 if (report != null)

{ B 4: {
println(report); 5 println(report);

Commit adding
the blank line

False positives!
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| Format/Aesthetic Changes

If the fixing commit modified a line that underwent at least one format change

after the bug was introduced, the BICs (or VCCs) resulting from blaming these
lines would be false positives, and the real BICs (VCCs) will be false negatives.

|

|
J l

N\ — _ — _ — e —

—_— — e e e — e ————— = _ N — P I —
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I If the fixing commit modified a line that underwent at least one format change
after the bug was introduced, the BICs (or VCCs) resulting from blaming these

lines would be false positives, and the real BICs (VCCs) will be false negatives.

\, - E—— f__ — = — - p—— ————— e — E— ——— p—

@ rixed Revision

. public void foo() {

. public void foo() {
i f (fOlder —— null) 1f (folder = null)

return;

return; ‘
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If the fixing commit modified a line that underwent at least one format change
after the bug was introduced, the BICs (or VCCs) resulting from blaming these

lines would be false positives, and the real BICs (VCCs) will be false negatives.

\, - —— f__ — = — - p—— ————— e — E— ——— p—

@ rixed Revision

. public void foo() {

. public void foo() {
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return;

return; ‘
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= - 3 = — — — - = _ . — N

If the fixing commit modified a line that underwent at least one format change |
after the bug was introduced, the BICs (or VCCs) resulting from blaming these

lines would be false positives, and the real BICs (VCCs) will be false negatives.

\, - —— r__ — = — - p—— ————— e — E— ——— p—

levision B |
. public void foo() { 1t public void 100() 1 ;
if (folder == null) return; 17 (folder == null)
R B 4 | . return;

. public void foo() {
1f (folder == null)
return;

. public void foo() {
if (folder != null) return;
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m is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all

that glitters is not gold: it has some problems.

\—

The commit that
brought Ato B is
adding the bug/

vulnerability!

. public void
if (folder != null) return;

If the fixing commit modified a line that underwent at least one format change

after the bug was introduced, the BICs (or VCCs) resulting from blaming these
lines would be false positives, and the real BICs (VCCs) will be false negatives.

evision B

. public void foo() f{ - 1: public void To0() {
if (folder == null) return; : 1T (tfolder == null)
- 3 return;

. public void foo() {
1f (folder == null)
return;

foo() {




MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

—— - B — e —————— - _ - __ - = TN

If the fixing commit modified a line that underwent at least one format change
after the bug was introduced, the BICs (or VCCs) resulting from blaming these

lines would be false positives, and the real BICs (VCCs) will be false negatives.

\, - —— r__ — = — - p—— ————— e — E— ——— p—

C is the last commit

that changed line 2 evision B |
(false POSItIVG), / . public void foo() { ¥ puplic void foo() { j
shadowing B (false | if (folder == null) return; | . (Iolder == null)
. . S | . recurn, |
negative)!
‘ Revision A D | D
. — . public void foo() {

1f (folder == null)
return;

. public void foo() {

if (folder != null) return;
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SZZ by Kim et al.
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Abstract

Bug-fixes are widely used for predicting bugs or
finding risky parts of software. However, a bug-fix does
not contain information about the change that initially
introduced a bug. Such bug-introducing changes can help
identify important properties of software bugs such as
correlated factors or causalities. For example, they reveal
which developers or what kinds of source code changes
introduce more bugs. In contrast to bug-fixes that are
relatively easy to obtain, the extraction of bug-
introducing changes is challenging.

In this paper, we present algorithms to automatically
and accurately identify bug-introducing changes. We
remove false positives and false negatives by using
annotation graphs, by ignoring non-semantic source code
changes, and outlier fixes. Additionally, we validated that
the fixes we used are true fixes by a manual inspection.
Altogether, our algorithms can remove about 38%~51%
of false positives and 14%~15% of false negatives
compared to the previous algorithm. Finally, we show
applications of bug-introducing changes that demonstrate
their value for research.

1. Introduction

Today, software bugs remain a constant and costly
fixture of industrial and open source software
development. To manage the flow of bugs, software
projects carefully control their changes using software
configuration management (SCM) systems, capture bug
reports using bug tracking software (such as Bugzilla),
and then record which change in the SCM system fixes a
specific bug in the change tracking system.

The progression of a single bug is as follows. A
programmer makes a change to a software system, either
to add new functionality, restructure the code, or to repair
an existing bug. In the process of making this change,
they inadvertently introduce a bug into the software. We
call this a bug-introducing change, the modification in
which a bug was injected into the software. At some later
time, this bug manifests itself in some undesired external
behavior, which is recorded in a bug tracking system.
Subsequently, a developer modifies the project’s source
code, possibly changing multiple files, and repairs the
bug. They commit this change to the SCM system,

21st |IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006 |IEEE
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’Saarland University,
Saarbriicken, Germany
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permanently recording the change. As part of the commit,
developers commonly (but not always) record in the SCM
system change log the identifier of the bug report that was
just fixed. We call this modification a bug-fix change.

Software evolution research leverages the history of
changes and bug reports that accretes over time in SCM
systems and bug tracking systems to improve our
understanding of how a project has grown. It offers the
possibility that by examining the history of changes made
to a software project, we might better understand patterns
of bug introduction, and raise developer awareness that
they are working on risky—that is, bug-prone—sections
of a project. For example, if we can find rules that
associate bug-introducing changes with certain source
code change patterns (such as signature changes that
involve parameter addition [11]), it may be possible to
identify source code change patterns that are bug-prone.

Due to the widespread use of bug tracking and SCM
systems, the most readily available data concerning bugs
are the bug-fix changes. It is easy to mine an SCM
repository to find those changes that have repaired a bug.
To do so, one examines change log messages in two
ways: searching for keywords such as "Fixed" or "Bug"
[12] and searching for references to bug reports like
“#42233” [2, 4, 16]. With bug-fix information,
researchers can determine the location of a bug. This
permits useful analysis, such as determining per-file bug
counts, predicting bugs, finding risky parts of software [7,
13, 14], or visually revealing the relationship between
bugs and software evolution [3].

The major problem with bug-fix data is that it sheds no
light on when a bug was injected into the code and who
injected it. The person fixing a bug is often not the person
who first made the bug, and the bug-fix must, by
definition, occur after the bug was first injected. Bug-fix
data also provides imprecise data on where a bug
occurred. Since functions and methods change their
names over time, the fact that a fix was made to function
“foo” does not mean the function still had that name when
the bug was injected; it could have been named “bar”
then. In order to deeply understand the phenomena
surrounding the introduction of bugs into code, such as
correlated factors and causalities, we need access to the
actual moment and point the bug was introduced. This is
tricky, and the focus of our paper.
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e P N - b
‘| — ‘ — |git blame| — |/ G
Project Bug Last buggy 7 A
Tracker Bug Report revision Annotated l
file(s) D A
I Candidate
N BICs
‘)—»E—»/‘—» git diff | — | — |
Project Commit-issue  Fix Commit Changed . .
History Linkage Lines BICs

Let’s go back to the original SZZ...
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A Framework for Evaluating the Results
of the SZZ Approach for Identifying
Bug-Introducing Changes

Daniel Alencar da Costa, Shane Mcintosh, Weiyi Shang, Uira Kulesza,
Roberta Coelho, and Ahmed E. Hassan

Abstract—The approach proposed by Sliwerski, Zimmermann, and Zeller (SZZ) for identifying bug-introducing changes is at the
foundation of several research areas within the software engineering discipline. Despite the foundational role of SZZ, little effort has
been made to evaluate its results. Such an evaluation is a challenging task because the ground truth is not readily available. By
acknowledging such challenges, we propose a framework to evaluate the results of alternative SZZ implementations. The framework
evaluates the following criteria: (1) the earliest bug appearance, (2) the future impact of changes, and (3) the realism of bug
introduction. We use the proposed framework to evaluate five SZZ implementations using data from ten open source projects. We find
that previously proposed improvements to SZZ tend to inflate the number of incorrectly identified bug-introducing changes. We also
find that a single bug-introducing change may be blamed for introducing hundreds of future bugs. Furthermore, we find that SZZ
implementations report that at least 46 percent of the bugs are caused by bug-introducing changes that are years apart from one
another. Such results suggest that current SZZ implementations still lack mechanisms to accurately identify bug-introducing changes.
Our proposed framework provides a systematic mean for evaluating the data that is generated by a given SZZ implementation.

Index Terms—SZZ, evaluation framework, bug detection, software repository mining
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1 INTRODUCTION

SOFrWARE bugs are costly to fix [1]. For instance, a recent
study suggests that developers spend approximately
half of their time fixing bugs [2]. Hence, reducing the
required time and effort to fix bugs is an alluring research
problem with plenty of potential for industrial impact.

After a bug has been reported, a key task is to identify the
root cause of the bug such that a team can learn from its
mistakes. Hence, researchers have developed several app-
roaches to identify prior bug-introducing changes, and to
use such knowledge to avoid future bugs [3], [4], [5], [6], [7],
[8], [9], [10].

A popular approach to identify bug-introducing changes
was proposed by Sliwerski, Zimmermann, and Zeller
(“SZZ" for short) [9], [11]. The SZZ approach first looks for
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bug-fixing changes by searching for the recorded bug ID in
change logs. Once these bug-fixing changes are identified,
SZZ analyzes the lines of code that were changed to fix the
bug. Finally, SZZ traces back through the code history to
find when the changed code was introduced (i.e., the sup-
posed bug-introducing change(s)).

Two lines of prior work highlight the foundational role of
SZZ in software engineering (SE) research. The first line
includes studies of how bugs are introduced [9], [10], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22]. For exam-
ple, by studying the bug-introducing changes that are
identified by SZZ, researchers are able to correlate charac-
teristics of code changes (e.g., time of day that a change is
recorded [9]) with the introduction of bugs. The second line
of prior work includes studies that leverage the knowledge
of prior bug-introducing changes in order to avoid the intro-
duction of such changes in the future. For example, one way
to avoid the introduction of bugs is to perform just-in-time
(JIT) quality assurance, i.e., to build models that predict if a
change is likely to be a bug-introducing change before inte-
grating such a change into a project’s code base. [6], [8],
[23], [24], [25].

Despite the foundational role of SZZ, the current evalua-
tions of SZZ-generated data (the indicated bug-introducing
changes) are limited. When evaluating the results of SZZ
implementations, prior work relies heavily on manual
analysis [9], [11], [26], [27]. Since it is infeasible to analyze
all of the SZZ results by hand, prior studies select a small
sample for analysis. While the prior manual analyses yield
valuable insights, the domain experts (e.g., developers or
testers) were not consulted. These experts can better judge
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Kim et al. that ignores merge
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1 INTRODUCTION

SOFFWARE bugs are costly to fix [1]. For instance, a recent
study suggests that developers spend approximately
half of their time fixing bugs [2]. Hence, reducing the
required time and effort to fix bugs is an alluring research
problem with plenty of potential for industrial impact.

After a bug has been reported, a key task is to identify the
root cause of the bug such that a team can learn from its
mistakes. Hence, researchers have developed several app-
roaches to identify prior bug-introducing changes, and to
use such knowledge to avoid future bugs [3], [4], [5], [6], [7],
(8], [9], [10].

A popular approach to identify bug-introducing changes
was proposed by Sliwerski, Zimmermann, and Zeller
(“SZZ" for short) [9], [11]. The SZZ approach first looks for
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bug-fixing changes by searching for the recorded bug ID in
change logs. Once these bug-fixing changes are identified,
SZZ analyzes the lines of code that were changed to fix the
bug. Finally, SZZ traces back through the code history to
find when the changed code was introduced (i.e., the sup-
posed bug-introducing change(s)).

Two lines of prior work highlight the foundational role of
SZZ in software engineering (SE) research. The first line
includes studies of how bugs are introduced [9], [10], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22]. For exam-
ple, by studying the bug-introducing changes that are
identified by SZZ, researchers are able to correlate charac-
teristics of code changes (e.g., time of day that a change is
recorded [9]) with the introduction of bugs. The second line
of prior work includes studies that leverage the knowledge
of prior bug-introducing changes in order to avoid the intro-
duction of such changes in the future. For example, one way
to avoid the introduction of bugs is to perform just-in-time
(JIT) quality assurance, i.e., to build models that predict if a
change is likely to be a bug-introducing change before inte-
grating such a change into a project’s code base. [6], [8],
[23], [24], [25].

Despite the foundational role of SZZ, the current evalua-
tions of SZZ-generated data (the indicated bug-introducing
changes) are limited. When evaluating the results of SZZ
implementations, prior work relies heavily on manual
analysis [9], [11], [26], [27]. Since it is infeasible to analyze
all of the SZZ results by hand, prior studies select a small
sample for analysis. While the prior manual analyses yield
valuable insights, the domain experts (e.g., developers or
testers) were not consulted. These experts can better judge
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understand which is better. Luckily, some
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Abstract—The SZZ algorithm for identifying bug-inducing
changes has been widely used to evaluate defect prediction

i and to irically investigate when, how, and by
whom bugs are introduced. Over the years, researchers have pro-
posed several heuristics to improve the SZZ accuracy, providing

This means that if a comment is modified in Cpp, the latest
change to that is mi y id as a bug-
inducing commit. An improvement by Kim et al. [11] was
therefore to ignore changes to code comments and blank lines

i b

various implementations of SZZ. However, fairly ing those
implementations on a reliable oracle is an open problem: SZZ
evaluations usually rely on (i) the manual analysis of the SZZ

ify the identified bug-inducing commits as true or

inducing commits. In both cases, these manual evaluations are
with limited of the studied

by
subject systems. Ideally, there should be a golden set created by
the original developers of the studied systems.

We propose a methodology to build a “developer-informed”
oracle for the evaluation of SZZ variants. We use Natural Lan-
guage Processing (NLP) to identify bug-fixing commits in which
developers explicitly reference the commit(s) that introduced a
fixed bug. This was followed by a manual filtering step aimed at
ensuring the quality and accuracy of the oracle. Once built, we
used the oracle to evaluate several variants of the SZZ algorithm
in terms of their accuracy. Our evaluation helped us to distill a
set of lessons learned to further improve the SZZ algorithm.

Index Terms—SZZ, Defect Prediction, Empirical Study

I. INTRODUCTION

The SZZ algorithm, proposed by Sliwerski, Zimmermann,
and Zeller [1] at MSR 2005, identifies, given a bug-fixing
commit C'g -, the commits that likely introduced the bug fixed
in C'gp. These commits are termed “bug-inducing” commits.
In essence, given C'pp as input, SZZ identifies the last change
(commit) to each source code line changed in Cpp (ie.,
changed to fix the bug). This is done by relying on the

ion/blame feature of ioning systems. The identified
commits are considered as the ones that later on triggered the
bug-fixing commit C'p .

SZZ has been widely adopted to (i) design and evaluate
defect prediction techniques [2]-[6], and to (ii) run empirical
studies aimed at investigating under which circumstances bugs
are introduced [7]-[10]. The relevance of the SZZ algorithm
was recognized a decade later with a MIP (Most Influential
Paper award) presented at the 12th Working Conference on
Mining Software Repositories (MSR 2015).

Several researchers have proposed variants of the original
algorithm, with the goal of boosting its accuracy [11]-[16].

For example, one issue with the basic SZZ implementation
is that it considers changes to code comments and whitespaces
like any other change.

as g-inducing commits.

Despite the major advances made on the accuracy of SZZ,
Alencar da Costa et al. [14] highlighted the major difficulties
in fairly evaluating and comparing the SZZ variants proposed
in the literature. They observed that the studies presenting
and evaluating SZZ variants mostly rely on manual analysis
of a small sample of SZZ results [1], [11]-[13], with the
goal of evaluating its accuracy. Such an evaluation is usually
performed by the researchers who—not being the original
developers of the studied systems—do not always have the
knowledge needed to correctly identify the bug introducing
commit. Also, due to the high cost of such a manual analysis,
it is usually performed on a small sample of the identified bug-
inducing commits. Other researchers built instead a ground
truth to evaluate the performance of the SZZ algorithm [16].
However, also in these cases, the ground truth is produced
by the researchers. Alencar da Costa et al. [14] called for
evaluations performed with “domain experts (e.g., develop-
ers or testers)” reporting however that “such an analysis is
impractical” since “the experts would need to verify a large
sample of bug-introducing changes, which is difficult to scale
up to the size of modern defect datasets” [14].

‘We present a y to build a “ per-informed”
oracle for the evaluation of SZZ impl i To explain
its idea, let us take as example commit aBa97bd from the
apache/thrift GitHub project, accompanied by a com-
mit message saying: “THRIFT-4513: fix bug in comparator
introduced by e58f75d”. The developer fixing the bug is
explicitly documenting the commit that introduced such a
bug. Based on this observation, we defined a number of strict
NLP-based heuristics to automatically identify notes in bug-
fixing commits in which developers explicitly reference the
commit(s) that introduced the fixed bug. We applied these
heuristics to a total of 19,603,736 mined through GH Archive
[39], which archives all public events on GitHub.

Our goal with the above described process is not to be ex-
haustive, i.e., we do not want to identify all bug-fixing commits
in which P the bug-inducing commit(s), but
rather to obtain a high-quality dataset of commits that were
certainly of the bug-inducing kind.

Rosa et al.

Comparison of nine SZZ
variants on 123 OSS projects.
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A Framework for Evaluating the Results
of the SZZ Approach for Identifying
Bug-Introducing Changes

Daniel Alencar da Costa, Shane Mclntosh, Weiyi Shang, Uira Kulesza,
Roberta Coelho, and Ahmed E. Hassan

Abstract—The approach proposed by Sliwerski, Zimmermann, and Zeller (SZ2) for identifying bug-introducing changes is at the
foundation of several research areas within the software engineering discipline. Despite the foundational role of SZZ, little effort has
been made to evaluate its results. Such an evaluation is a challenging task because the ground truth is not readily available. By
acknowledging such challenges, we propose a framework to evaluate the results of szz 1s. The

evaluates the following criteria: (1) the earliest bug appearance, (2) the future impact of changes, and (3) the realism of bug
introduction. We use the proposed framework to evaluate five SZZ implementations using data from ten open source projects. We find
that previously proposed improvements to SZZ tend to inflate the number of incorrectly identified bug-introducing changes. We also
find that a single bug-introducing change may be blamed for introducing hundreds of future bugs. Furthermore, we find that SZZ
implementations report that at least 46 percent of the bugs are caused by bug-introducing changes that are years apart from one
another. Such results suggest that current SZZ 1s still lack to accurately identify bug-introducing changes.

Our proposed framework provides a systematic mean for evaluating the data that is generated by a given SZZ implementation.

Index Terms—SZZ, evaluation framework, bug detection, software repository mining

1 INTRODUCTION

SOFFW,\RE bugs are costly to fix [1]. For instance, a recent
study suggests that developers spend approximately
half of their time fixing bugs [2]. Hence, reducing the
required time and effort to fix bugs is an alluring research
problem with plenty of potential for industrial impact.

After a bug has been reported, a key task is to identify the
root cause of the bug such that a team can learn from its
mistakes. Hence, researchers have developed several app-
roaches to identify prior bug-introducing changes, and to
use such knowledge to avoid future bugs [3], [4], 5], [6], [7],
[8], [9], [10].

A popular approach to identify bug-introducing changes
was proposed by Sliwerski, Zimmermann, and Zeller
(“SZZ" for short) [9], [11]. The SZZ approach first looks for

D.A. da Costa, U. Kulesza, and R. Coelho are with the Department of
Informatics and Applied Mathematics (DIMAp), Federal University of
Rio Grande do Norte, Natal-RN 59078-970, Bra:
E-mail: danielcosta@ppgsc.ufrn.br, {uira, roberta)@dimap.ufrn.br.
S. Mclntosh is with the Department of Electrical and Computer Engineer-
ing, McGill University, Montreal, QC H3A 0G4, Canada.

‘mail: shane. mcintosh@megill.ca
ith the Department of Computer Science and Software Engi-
tcordia University, Montreal, QC H4B 1R6, Canada

: shang@encs.concordia.ca.

o AE. Hassan is with the Software Analysis and Intelligence Lab (SAIL),
School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada.
E-mail: ahmed@cs queensu.ca.

Manuscript received 4 Sept. 2015; revised 13 Sept. 2016; accepted 30 Sept.
2016. Date of publication 10 Oct. 2016; date of current version 24 July 2017
Recommended for acceptance by A. Zeller

For information on obtaining reprints of this article, please send e-mail to
reprints@iece.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2016.2616306

bug-fixing changes by searching for the recorded bug ID in
change logs. Once these bug-fixing changes are identified,
SZZ analyzes the lines of code that were changed to fix the
bug. Finally, SZZ traces back through the code history to
find when the changed code was introduced (i.e., the sup-
posed bug-introducing change(s)).

Two lines of prior work highlight the foundational role of
SZZ in software engineering (SE) research. The first line
includes studies of how bugs are introduced [9], [10], [12],
[13], [14], [15], [16], [17], (18], [19], [20], [21], [22]. For exam-
ple, by studying the bug-introducing changes that are
identified by SZZ, researchers are able to correlate charac-
teristics of code changes (e.g., time of day that a change is
recorded [9]) with the introduction of bugs. The second line
of prior work includes studies that leverage the knowledge
of prior bug-introducing changes in order to avoid the intro-
duction of such changes in the future. For example, one way
to avoid the introduction of bugs is to perform just-in-time
(JIT) quality assurance, i.e., to build models that predict if a
change is likely to be a bug-introducing change before inte-
grating such a change into a project’s code base. [6], [8],
[23], [24], [25].

Despite the foundational role of SZZ, the current evalua-
tions of SZZ-generated data (the indicated bug-introducing
changes) are limited. When evaluating the results of SZZ
implementations, prior work relies heavily on manual
analysis [9], [11], [26], [27]. Since it is infeasible to analyze
all of the SZZ results by hand, prior studies select a small
sample for analysis. While the prior manual analyses yield
valuable insights, the domain experts (e.g., developers or
testers) were not consulted. These experts can better judge

da Costa et al.

Comparison of five SZZ
variants on ten OSS projects.
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Abstract

‘When identifying the origin of software bugs, many studies assume that “a bug was intro-
duced by the lines of code that were modified to fix it”. However, this assumption does not
always hold and at least in some cases, these modified lines are not responsible for intro-
ducing the bug. For example, when the bug was caused by a change in an external API. The
lack of empirical evidence makes it impossible to assess how important these cases are and
therefore, to which extent the assumption is valid. To advance in this direction, and better
understand how bugs “are born”, we propose a model for defining criteria to identify the
first snapshot of an evolving software system that exhibits a bug. This model, based on the
perfect test idea, decides whether a bug is observed after a change to the software. Further-
more, we studied the model’s criteria by carefully analyzing how 116 bugs were introduced
in two different open source software projects. The manual analysis helped classify the root
cause of those bugs and created manually curated datasets with bug-introducing changes
and with bugs that were not introduced by any change in the source code. Finally, we used
these datasets to evaluate the performance of four existing SZZ-based algorithms for detect-
ing bug-introducing changes. We found that SZZ-based algorithms are not very accurate,
especially when multiple commits are found; the F-Score varies from 0.44 to 0.77, while the
percentage of true positives does not exceed 63%. Our results show empirical evidence that
the prevalent assumption, “a bug was introduced by the lines of code that were modified to
fix it”, is just one case of how bugs are introduced in a software system. Finding what intro-
duced a bug is not trivial: bugs can be introduced by the developers and be in the code, or
be created irrespective of the code. Thus, further research towards a better understanding of
the origin of bugs in software projects could help to improve design integration tests and to
design other procedures to make software development more robust.

Keywords Bug origins - Bug-introducing changes - First-failing change - SZZ algorithm -
Extrinsic bugs - Intrinsic bugs
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with highest defect density did not intersect with the files of
highest vulnerability density. These results indicate that bugs

If not, perhaps some subgroups of bugs (e.g. stability bugs)

and v ies are groups,

may 1 in the future.

the need for more research targeting

1. INTRODUCTION

Developers are facing an ever-increasing pressure to en-
gineer secure software. A simple coding mistake or design

flaw can lead to an i v if dis d by
the wrong people. These vulnerabilities, while rare, can have
phic and ible impact on our i ly digital

lives. Vulnerabilities as recent as Shellshock and Heartbleed

The objective of this research is improve our fundamental
understanding of vulnerabilities by empirically evaluating the
connections between bugs and vulnerabilities. We conducted
an in-depth analysis of the Chromium open source project
(aka Google Chrome). We collected code reviews, post-
release vulnerabilities, version control data, and bug data over
six years of the project. We conducted regression analysis
to evaluate the strength of association, along with examining

b and various rankings of the files. We repeated our

are reminders that small mistakes can lead to widespread
problems. To engineer secure software, developers need a

ientifically rigorous standing of how to detect and
prevent vulnerabilities.

‘We can build an understanding of vulnerabilities by viewing
them as security-sensitive bugs. That is, a vulnerability can
be defined as a “software defect that violates an [implicit or
explicit] security policy” [1]. Research into mining software
repositories has greatly increased our understanding of soft-
ware quality via empirical study of bugs. Researchers have

analysis across five annual releases to gauge the sensitivity of
the results. We focused on the following research questions
(and had the following results):
RQI. Are source code files fixed for bugs likely to be fixed
for future vulnerabilities? (We found that files with more pre-
release bugs are slightly more likely to present post-release
vulnerabilities.)
RQ2. Are some types of bugs more closely related to vulnera-
bilities than others? (Here we discovered that while of some
types of pre-release bugs present a stronger association than

provided a myriad of metrics di models, hypoth

others to post-rel ities, this relation is overall

smaller time to fix than canonical bugs.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Vulnerabilities conceptually differ from canonical bugs: while
a bug that is not related to security is a wrong or an incom-
plete functionality, a vulnerability represents an abuse of a
functionality (Camilo et al., 2015). More specifically, vulnera-
bilities allow the violation of policies that can lead to an illicit
or malicious use of the software (Othmar al,, 2017).In par-
ticular, the presence of vulnerabilities exposes software sys-
tems to security attacks (Joshi et al., 2015) that are often car-
ried out through malicious software intendedly conceived (or
assembled (Mercaldo et al., 2018)) to exploit such vulnerabili-
ties. Thus, for preventing from security and privacy violations,
vulnerabilities need to be promptly fixed (Russo et al., 2019).

However, inefficiencies in the vulnerability management pro-
cess could likely affect the vulnerability fixing performance.
While approaches and techniques for aiding developers
during the fixing process of canonical bugs have been widely
investigated (Zhang et al, 2015), it is not clear whether
such approaches are also effective when dealing with vul-
nerabilities. More specifically, little is known about how
vulnerabilities are discovered and resolved (Morrison et al,,
2018). To fill this gap, our work is aimed at gathering knowl-
edge on vulnerability fixing processes in order to identify (i)
the peculiarities and the shortcomings that could arise in
these p and (i) the imp! that may be im-
plemented to cope with the emphasized weaknesses. For this
reason, this paper investigates the extent to which fixing a
vulnerability differs from fixing a canonical bug, with the aim

* Corresponding author.

1. Introduction

Software maintenance involves critical tasks, as fixing code defects

and evolving the software according to the emerging needs of users [1].

In this context, change impact analysis aims at “identifying the potential

consequences of a change, or estimating what needs to be modified to
accomplish a change” [2]. In particular, change impact analysis plays an

important role in software maintenance phase, as it allows estimating

and identifying (i) the effort required to implement a change [2],

(i) the software artifacts that require to be changed [3], or (iii) test

cases that need to be re-executed [4], before applying the change itself.

It also enables developers and project leaders to evaluate alternative
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solutions to address the change, without the need of implementing
them. While iques and tools for ing impact analysis of
change requests proposed by end-users on the existing software arti-
facts have been extensively explored [5], to the best of the authors’
knowledge, there are no approaches for estimating the impact on
the system when the changes involve vulnerability fixing activities.
According to the definition provided by the MITRE corporation, a
security vulnerability is a “flaw in a software, firmware, hardware, or
service component resulting from a weakness that can be exploited, causing
a negative impact to the iality, integrity, or availability of an im-
pacted component or components”.' Each software vulnerability is caused
by a weakness in the code that could have specific effects on the system
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Despite the security community’s best effort, the number
of serious vulnerabilities discovered in software is increasing
rapidly. In theory, security audits should find and remove
the vulnerabilities before the code ever gets deployed. How-
ever, due to the enormous amount of code being produced,
as well as a the lack of manpower and expertise, not all code
is sufficiently audited. Thus, many vulnerabilities slip into
production systems. A best-practice approach is to use a
code metric anal; tool, such as Flawfinder, to flag poten-
tially dangerous code so that it can receive special attention.
However, because these tools have a very high false-positive
rate, the manual effort needed to find vulnerabilities remains
overwhelming.

In this paper, we present a new method of finding poten-
tially dangerous code in code repositories with a significantly

lower false-positive rate than comparable systems. We com-
bine code-metric analysis with metadata gathered from code
repositories to help code review teams prioritize their work.
The paper makes three contributions. First, we conducted
the first large-scale mapping of CVEs to GitHub commits
in order to create a vulnerable commit database. Second,
based on this database, we trained a SVM classifier to flag
suspicious commits. Compared to Flawfinder, our approach
reduces the amount of false alarms by over 99 % at the same
level of recall. Finally, we present a thorough quantitative
and qualitative ang of our approach and discuss lessons
learned from the results. We will share the database as

a benchmark for future research and will also provide our
analysis tool as a web service.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection
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1. INTRODUCTION

Despite the best effort of the security community, the
number of serious vulnerabilities discovered in deployed soft-
ware is on the rise. The Common Vulnerabilities and Expo-
sures (CVE) database operated by MITRE tracks the most
serious vulnerabilities. In 2000, around 1,000 CVEs were
registered. By 2010, there were about 4,500. In 2014, al-
most 8,000 CVEs were registered. The trend seems to be
increasing in speed.

While it is considered a best practice to perform code
reviews before code is released, as well as to retroactively
checking old code, there is often not enough manpower to
rigorously review all the code that should be reviewed. Al-
though open-source projects have the advantage that any-
body can, in theory, look at all the source code, and although
bug-bounty programs create incentives to do so, usually only

a small team of core developers reviews the code.

In order to support code reviewers in finding vulnerabili-
ties, tools and methodologies that flag potentially dangerous
code are used to narrow down the search. For C-like lan-
guages, a wide variety of code metrics can raise warning
flags, such as a variable igned inside an if-statement or
unreachable cas ch-statement. The Clang static
analyzer [1] as well as the dynamic analyzer Valgrind [3] and
others, can pinpoint further pitfalls such as invalid mem-
ory access. For the Linux kernel, the Trinity system call-
fuzzer [2] has found and continues to find many bugs. Fi-
nally, static analysis tools like Flawfinder [34] help find pos-
sible security vulnerabilities.

Most of these approaches operate on an entire software
project and deliver a (frequently very large) list of poten-
tially unsafe code. However, software grows incrementally
and it is desirable to have tools to assist in reviewing these
increments as well as tools to check entire projects. Most
open-source projects manage their source code with version
control systems (VCS) such as Git, Mercurial, CVS or Sub-
version. In such systems, code - including vulnerable code

is inserted into the software in the form of commits to the
repository. Therefore, the natural unit upon which to check
whether new code is dangerous is the commit. However,
most existing tools cannot simply be executed on code snip-

in a sw

pets contained within a commit. Thus, if a code reviewe
wants to check the security of a commit, the reviewer must
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I®" In addition to the blames on the deleted lines, this
variant also considers the blames on the lines
around the block of new lines.
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Let us consider a commit that fixes a vulnerability
by adding this line:

" int main(int argc, char* argv[]) {
| char buff[65], *temp;

Blamed <€— temp = argv[1l] ? argv[l] : "";
| 1T (argc > 0 && strlen(argv[l]) > 64)
Blamed <+— strcpy(buff, temp),;

printf("%s", "bye");

Rationale

Some vulnerabillities are fixed by adding missing checks, e.g.,
an if added before reading from a buffer. Hence, the context around the
new code blocks might be responsible for the vulnerabillity.
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1. INTRODUCTION

Despite the best effort of the
number of serious vulnerabilities discovered in deployed soft-
ware is on the rise. The Common Vulnerabilities and Expo-
sures (CVE) database operated by MITRE tracks the most
serious vulnerabilities. In 2000, around 1,000 CVEs were
registered. By 2010, there were about 4,500. In 2014, al-
most 8,000 CVEs were registered. The trend seems to be
increasing in speed.

While it is considered a best practice to perform code
reviews before code is released, as well as to retroactively
checking old code, there is often not enough manpower to
rigorously review all the code that should be reviewed. Al-
though open-source projects have the advantage that any-
body can, in theory, look at all the source code, and although
bug-bounty programs create incentives to do so, usually only

ecurity community, the

a small team of core developers reviews the code.

In order to support code reviewers in finding vulnerabili-
ties, tools and methodologies that flag potentially dangerous
code are used to narrow down the search. For C-like lan-
guages, a wide variety of code metrics can raise warning
flags, such as a variable igned inside an if-statement or
unreachable cas ch-statement. The Clang static
analyzer [1] as well as the dynamic analyzer Valgrind [3] and
others, can pinpoint further pitfalls such as invalid mem-
ory access. For the Linux kernel, the Trinity system call-
fuzzer [2] has found and continues to find many bugs. Fi-
nally, static analysis tools like Flawfinder [34] help find pos-
sible security vulnerabilities.

Most of these approaches operate on an entire software
project and deliver a (frequently very large) list of poten-
tially unsafe code. However, software grows incrementally
and it is desirable to have tools to assist in reviewing these
increments as well as tools to check entire projects. Most
open-source projects manage their source code with version
control systems (VCS) such as Git, Mercurial, CVS or Sub-
version. In such systems, code - including vulnerable code

is inserted into the software in the form of commits to the
repository. Therefore, the natural unit upon which to check
whether new code is dangerous is the commit. However,
most existing tools cannot simply be executed on code snip-

in a sw

pets contained within a commit. Thus, if a code reviewer
wants to check the security of a commit, the reviewer must

techniques!

A modified version of the original SZZ but:

I@® Documentation files (e.g., README) are ignored.

I®" In addition to the blames on the deleted lines, this
variant also considers the blames on the lines
around the block of new lines.

It returns only the most blamed commit. In case
of a tie, all the commits with the top score are
returned (ex aequo).
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Abstract—TIt has been widely adopted to minimize the mainte-
nance cost by predicting potential vulnerabilities before code au-
dits in academia and industry. Most previous research dedicated
to file/component-level vulnerability prediction models is coarse-
grained and may suffer from cost-prohibitive and impractical
security testing activities. In this paper, we focus on a cost-
aware vulnerability prediction model and present a just-in-time
change-level code review tool called VulDigger to dig suspicious
ones from a sea of code changes. Our contributions benefit from
the case study of Mozilla Firefox by constructing a large-scale
vulnerability-contributing changes (VCCs) dataset in a semi-
automatic fashion. We then further manifest a classification tool
with a mixture of established and new metrics derived from
both software defect prediction and vulnerability prediction.
Consequently, the precision of such tool is extremely promising
(i.e., 92%) for an effort-aware software team. We also examine
the return on investment by training a regression model to locate
most skeptical changes with fewer lines to inspect. Our findings
suggest that such model is capable of pinpointing 31% of all
VCCs with only 20% of the effort it would take to audit all
changes (i.e., 55% better than random predictor). Our outputs
can assist as an early step of i security inspections as
it provides i diate feedback once developers submit ch
to their code base.

I. INTRODUCTION

Code audits and security testing have been cost-prohibitive
processes since most people today don’t test software until
it gets into the deployment phase of its life cycle and such
practice has been proved ineffective to locate vulnerabilities
or security bugs. Considering the disastrous consequence an
exploited vulnerability could cause, e.g., Heartbleed [1], and
to reduce the inspection effort, researchers have proposed a
multitude of vulnerability prediction models for assisting and
prioritizing code audits [2], [3], [4], [5].

Most of these studies focus on predicting vulnerable-prone
modules (ie., files or components) and can be beneficial
in some contexts. However, these predictions are generally
made too late. One of the suggested solutions is to apply
security testing on each phase of the development cycle. Early
detection is desirable as the later it gets into testing, the higher
the cost of finding and fixing a vulnerability would be.
Change-level predictions. Therefore, some researchers in-
troduced change-level prediction methods and concentrated
on predictions of vulnerability-contributing commits/changes
(VCCs) [6]. Similar to the field of software defect prediction,

the advantages of change-level predictions are [7]: (1) Predic-
tion is suitable for code snippets and thus smaller regions of
code needs inspection instead of huge files/components. (2)
Developers that are responsible for VCCs can easily be traced
and they can assist security experts or fix the security bugs
by themselves with all design decisions fresh in their minds.
(3) Predictions are made early and just-in-time as immediate
feedback is given once a change is submitted to the code base.
Chall for change-level predictions. To our best knowl-
edge, no one has performed change-level vulnerability predic-
tions except [6], we attribute it to the following two challenges:

o The lack of a ground-truth dataset. 1t’s arduous to deter-

mine which code changes that indeed induced a vulnera-
bility due to the multiplicity of code changes. Therefore,
building a VCC ground-truth dataset is challenging and
requires considerable human effort.
The disorderly structure of code changes. Code changes
could not retain the original structure and integrity like
files or components, hence many established measures
(e.g., code complexity, coupling, and cohesion) and com-
mercial analysis tools (e.g., Understand C++) are not
directly applicable.

Perl et al. [6] analyzed 66 open-source projects in GitHub

and presented a database with 640 VCCs. Compared to
Flawfinder [8], their results reduced many false positives with
same recall. However, they didn’t consider the actual effort in
code audits as some VCCs are huge (i.e., with thousands of
lines of modifications).
Our contributions. We therefore build a cost-aware change-
level vulnerability prediction model based on the code churn of
a change. Through the study of Mozilla Firefox project — one
of the most vulnerable open-source projects and has been the
target in a plethora of vulnerability studies yet most of them
focus on file/component-level predictions, our contributions
can be outlined as follows:

« We present a change-level code review tool — VulDigger,
to flag suspicious code changes immediately on the time
of submitting by deriving features from software defect
and vulnerability prediction models along with some new
metrics (e.g., the maximum changes has been made in the
past for files modified in a change). The precision of such
tool is extremely promising (i.e., 92%) for a cost-aware
software team.
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it gets into the deployment phase of its life cycle and such
practice has been proved ineffective to locate vulnerabilities
or security bugs. Considering the disastrous consequence an
exploited vulnerability could cause, e.g., Heartbleed [1], and
to reduce the inspection effort, researchers have proposed a
multitude of vulnerability prediction models for assisting and
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Most of these studies focus on predicting vulnerable-prone
modules (ie., files or components) and can be beneficial
in some contexts. However, these predictions are generally
made too late. One of the suggested solutions is to apply
security testing on each phase of the development cycle. Early
detection is desirable as the later it gets into testing, the higher
the cost of finding and fixing a vulnerability would be.
Change-level predictions. Therefore, some researchers in-
troduced change-level prediction methods and concentrated
on predictions of vulnerability-contributing commits/changes
(VCCs) [6]. Similar to the field of software defect prediction,

the advantages of change-level predictions are [7]: (1) Predic-
tion is suitable for code snippets and thus smaller regions of
code needs inspection instead of huge files/components. (2)
Developers that are responsible for VCCs can easily be traced
and they can assist security experts or fix the security bugs
by themselves with all design decisions fresh in their minds.
(3) Predictions are made early and just-in-time as immediate
feedback is given once a change is submitted to the code base.
Chall for change-level predictions. To our best knowl-
edge, no one has performed change-level vulnerability predic-
tions except [6], we attribute it to the following two challenges:

o The lack of a ground-truth dataset. 1t’s arduous to deter-

mine which code changes that indeed induced a vulnera-
bility due to the multiplicity of code changes. Therefore,
building a VCC ground-truth dataset is challenging and
requires considerable human effort.
The disorderly structure of code changes. Code changes
could not retain the original structure and integrity like
files or components, hence many established measures
(e.g., code complexity, coupling, and cohesion) and com-
mercial analysis tools (e.g., Understand C++) are not
directly applicable.

Perl et al. [6] analyzed 66 open-source projects in GitHub

and presented a database with 640 VCCs. Compared to
Flawfinder [8], their results reduced many false positives with
same recall. However, they didn’t consider the actual effort in
code audits as some VCCs are huge (i.e., with thousands of
lines of modifications).
Our contributions. We therefore build a cost-aware change-
level vulnerability prediction model based on the code churn of
a change. Through the study of Mozilla Firefox project — one
of the most vulnerable open-source projects and has been the
target in a plethora of vulnerability studies yet most of them
focus on file/component-level predictions, our contributions
can be outlined as follows:

« We present a change-level code review tool — VulDigger,
to flag suspicious code changes immediately on the time
of submitting by deriving features from software defect
and vulnerability prediction models along with some new
metrics (e.g., the maximum changes has been made in the
past for files modified in a change). The precision of such
tool is extremely promising (i.e., 92%) for a cost-aware
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it gets into the deployment phase of its life cycle and such
practice has been proved ineffective to locate vulnerabilities
or security bugs. Considering the disastrous consequence an
exploited vulnerability could cause, e.g., Heartbleed [1], and
to reduce the inspection effort, researchers have proposed a
multitude of vulnerability prediction models for assisting and
prioritizing code audits [2], [3], [4], [5].

Most of these studies focus on predicting vulnerable-prone
modules (ie., files or components) and can be beneficial
in some contexts. However, these predictions are generally
made too late. One of the suggested solutions is to apply
security testing on each phase of the development cycle. Early
detection is desirable as the later it gets into testing, the higher
the cost of finding and fixing a vulnerability would be.
Change-level predictions. Therefore, some researchers in-
troduced change-level prediction methods and concentrated
on predictions of vulnerability-contributing commits/changes
(VCCs) [6]. Similar to the field of software defect prediction,

the advantages of change-level predictions are [7]: (1) Predic-
tion is suitable for code snippets and thus smaller regions of
code needs inspection instead of huge files/components. (2)
Developers that are responsible for VCCs can easily be traced
and they can assist security experts or fix the security bugs
by themselves with all design decisions fresh in their minds.
(3) Predictions are made early and just-in-time as immediate
feedback is given once a change is submitted to the code base.
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edge, no one has performed change-level vulnerability predic-
tions except [6], we attribute it to the following two challenges:

o The lack of a ground-truth dataset. 1t’s arduous to deter-

mine which code changes that indeed induced a vulnera-
bility due to the multiplicity of code changes. Therefore,
building a VCC ground-truth dataset is challenging and
requires considerable human effort.
The disorderly structure of code changes. Code changes
could not retain the original structure and integrity like
files or components, hence many established measures
(e.g., code complexity, coupling, and cohesion) and com-
mercial analysis tools (e.g., Understand C++) are not
directly applicable.

Perl et al. [6] analyzed 66 open-source projects in GitHub

and presented a database with 640 VCCs. Compared to
Flawfinder [8], their results reduced many false positives with
same recall. However, they didn’t consider the actual effort in
code audits as some VCCs are huge (i.e., with thousands of
lines of modifications).
Our contributions. We therefore build a cost-aware change-
level vulnerability prediction model based on the code churn of
a change. Through the study of Mozilla Firefox project — one
of the most vulnerable open-source projects and has been the
target in a plethora of vulnerability studies yet most of them
focus on file/component-level predictions, our contributions
can be outlined as follows:

« We present a change-level code review tool — VulDigger,
to flag suspicious code changes immediately on the time
of submitting by deriving features from software defect
and vulnerability prediction models along with some new
metrics (e.g., the maximum changes has been made in the
past for files modified in a change). The precision of such
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of submitting by deriving features from software defect
and vulnerability prediction models along with some new
metrics (e.g., the maximum changes has been made in the
past for files modified in a change). The precision of such
tool is extremely promising (i.e., 92%) for a cost-aware
software team.

978-1-5090-5019-2/17/$31.00 ©2017 IEEE
Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on May 10,2023 at 07:51:56 UTC from IEEE Xplore. Restrictions apply.

techniques!

A modified version of the SZZ by Perl et al. but:

@ Test and non-C/C++ files are ignored. Changes to
comments, empty lines, and whitespaces are
ignored as well.

For each new line added, the blame around this
line is considered only if it contains a C/C++
keyword or a function call.

Unlike the Perl et al. variant, it considers the
blames around blocks of new lines only if they do
not contain new functions.

L. Yang, X. Li and Y. Yu, "VulDigger: A Just-in-Time and Cost-Aware Tool for Digging Vulnerability-Contributing Changes," GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Singapore, 2017, pp. 1-7, doi: 10.1109/GLOCOM.2017.8254428.
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Let us consider a commit that fixes a vulnerability
by adding this line and a new function:

int main(int argc, char* argv[]) {
char buff[65], *temp;

Blamed <€+— temp = argv([1l] 7 argv[1l] : "";
| 1T (argc > 0 && my len(argv[l]) > 64)
Blamed €— | strcpy(buff, temp);

printf("%s", "bye");

NOT blamed <+«— B
int my len(char* buff) {

return strlen(buff);

Rationale

Functions can be added anywhere in the file. Hence, the local context
does not always involve meaningful parts.
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Mining VCCs: Ad hoc Approaches

Okay but reusing the algorithms meant for bugs does not work well for VCCs. __, We need other VCC-specific
Indeed, there are studies explaining how bugs and vulnerabilities differ.
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ABSTRACT

Vulnerabilities publicly disclosed in the National Vulnerability Data-
base (NVD) are assigned with CVE (Common Vulnerabilities and Ex-
posures) IDs and associated with specific software versions. Many
organizations, including IT companies and government, heavily
rely on the disclosed vulnerabilities in NVD to mitigate their secu-
rity risks. Once a software is claimed as vulnerable by NVD, these
organizations would examine the presence of the vulnerable ver-
sions of the software and assess the impact on themselves. However,
the version information about vulnerable software in NVD is not
always reliable. Nguyen et al. find that the version information
of many CVE vulnerabilities is spurious and propose an approach
based on the original SZZ algorithm (i.e., an approach to identify
bug-introducing commits) to assess the software versions affected
by CVE vulnerabilities.

However, SZZ algorithms are designed for common bugs, while
vulnerabilities and bugs are different. Many bugs are introduced by a
recent bug-fixing commit, but vulnerabilities are usually introduced
in their initial versions. Thus, the current SZZ algorithms often fail
to identify the inducing commits for vulnerabilities. Therefore, in
this study, we propose an approach based on an improved SZZ al-
gorithm to refine software versions affected by CVE vulnerabilities.
Our proposed SZZ algorithm leverages the line mapping algorithms
to identify the earliest commit that modified the vulnerable lines,
and then considers these commits to be the vulnerability-inducing
commits, as opposed to the previous SZZ algorithms that assume
the commits that last modified the buggy lines as the inducing
c its. To eval our proposed approach, we manually anno-
tate the true inducing commits and verify the vulnerable versions
for 172 CVE vulnerabilities with fixing commits from two publicly
available datasets with five C/C++ and 41 Java projects, respectively.
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We find that 99 out of 172 vulnerabilities whose version informa-
tion is spurious. The experiment results show that our proposed
approach can identify more vulnerabilities with the true inducing
commits and correct vulnerable versions than the previous SZZ
algorithms. Our approach outperforms the previous SZZ algorithms
in terms of F1-score for identifying vulnerability-inducing commits
on both C/C++ and Java projects (0.736 and 0.630, respectively). For
refining vulnerable versions, our approach also achieves the best
performance on the two datasets in terms of F1-score (0.928 and
0.952).
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1 INTRODUCTION

Software vulnerabilities are software security bugs, posing a severe
threat to software systems. They can be exploited by attackers and
result in a security breach or a violation of the system’s security pol-
icy; for example, attackers can control the system or acquire private
data by exploiting a vulnerability. To share information pertain-
ing to publicly disclosed software vulnerabilities, the US National
Institute of Standards and Technology (NIST) builds the National
Vulnerability Database (NVD). These vulnerabilities are identified
by CVE (Common Vul bilities and Exposures) IDs, ¢ ining a
description, an estimation of the severity of the vulnerability, the
know affected software, and related references.

Recently, software supply chain security is increasingly impor-
tant for industrial companies as they usually use many OSS software
in their projects. Due to concern about vulnerabilities in project
dependencies, industrial companies often use Software Composi-
tion Analysis (SCA) tools (e.g., Snyk! and Whitesource?) to learn
about vulnerabilities in their dependencies. The output of these
SCA tools is based on CVE/NVD information. However, the soft-
ware versions of CVE vulnerabilities are not always reliable. For

Uhttps://snyk.io/
Zhttps://www.whitesourcesoftware.com/
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techniques!

A modified version of the SZZ by Kim et al. but:

L. Bao, X. Xia, A. E. Hassan and X. Yang, "V-SZZ: Automatic ldentification of Version Ranges Affected by CVE Vulnerabilities," 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), Pittsburgh, PA, USA, 2022, pp. 2352-2364, doi: 10.1145/3510003.3510113.
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data by exploiting a vulnerability. To share information pertain-
ing to publicly disclosed software vulnerabilities, the US National
Institute of Standards and Technology (NIST) builds the National
Vulnerability Database (NVD). These vulnerabilities are identified
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techniques!

A modified version of the SZZ by Kim et al. but:

I® The git blame is repeated beyond format
changes until reaching the commits that created
the blamed lines. This approach is supported by
both AST and string similarity matching.

L. Bao, X. Xia, A. E. Hassan and X. Yang, "V-SZZ: Automatic ldentification of Version Ranges Affected by CVE Vulnerabilities," 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), Pittsburgh, PA, USA, 2022, pp. 2352-2364, doi: 10.1145/3510003.3510113.



MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Ad hoc Approaches

Okay but reusing the algorithms meant for bugs does not work well for VCCs. __, We need other VCC-specific

Indeed, there are studies explaining how bugs and vulnerabilities differ.

(V-SZZ by Bao et al.

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

V-SZZ: Automatic Identification of Version Ranges Affected by
CVE Vulnerabilities

Lingfeng Bao
Zhejiang University
China
lingfengbao@zju.edu.cn

Ahmed E. Hassan
Queen’s University
Canada
ahmed@cs.queensu.ca

ABSTRACT

Vulnerabilities publicly disclosed in the National Vulnerability Data-
base (NVD) are assigned with CVE (Common Vulnerabilities and Ex-
posures) IDs and associated with specific software versions. Many
organizations, including IT companies and government, heavily
rely on the disclosed vulnerabilities in NVD to mitigate their secu-
rity risks. Once a software is claimed as vulnerable by NVD, these
organizations would examine the presence of the vulnerable ver-
sions of the software and assess the impact on themselves. However,
the version information about vulnerable software in NVD is not
always reliable. Nguyen et al. find that the version information
of many CVE vulnerabilities is spurious and propose an approach
based on the original SZZ algorithm (i.e., an approach to identify
bug-introducing commits) to assess the software versions affected
by CVE vulnerabilities.

However, SZZ algorithms are designed for common bugs, while
vulnerabilities and bugs are different. Many bugs are introduced by a
recent bug-fixing commit, but vulnerabilities are usually introduced
in their initial versions. Thus, the current SZZ algorithms often fail
to identify the inducing commits for vulnerabilities. Therefore, in
this study, we propose an approach based on an improved SZZ al-
gorithm to refine software versions affected by CVE vulnerabilities.
Our proposed SZZ algorithm leverages the line mapping algorithms
to identify the earliest commit that modified the vulnerable lines,
and then considers these commits to be the vulnerability-inducing
commits, as opposed to the previous SZZ algorithms that assume
the commits that last modified the buggy lines as the inducing
c its. To eval our proposed approach, we manually anno-
tate the true inducing commits and verify the vulnerable versions
for 172 CVE vulnerabilities with fixing commits from two publicly
available datasets with five C/C++ and 41 Java projects, respectively.

*Xin Xia is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org,

ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

® 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https:/doi.org/10.1145/3510003.3510113

Xin Xia®
Huawei
China
xin.xia@acm.org

Xiaohu Yang
Zhejiang University
China
yangxh@zju.edu.cn

We find that 99 out of 172 vulnerabilities whose version informa-
tion is spurious. The experiment results show that our proposed
approach can identify more vulnerabilities with the true inducing
commits and correct vulnerable versions than the previous SZZ
algorithms. Our approach outperforms the previous SZZ algorithms
in terms of F1-score for identifying vulnerability-inducing commits
on both C/C++ and Java projects (0.736 and 0.630, respectively). For
refining vulnerable versions, our approach also achieves the best
performance on the two datasets in terms of F1-score (0.928 and
0.952).

KEYWORDS

SZZ, Vulnerability, CVE

ACM Reference Format:

Lingfeng Bao, Xin Xia, Ahmed E. Hassan, and Xiaohu Yang. 2022. V-SZZ:
Automatic Identification of Version Ranges Affected by CVE Vulnerabilities.
In 44th International Conference on Software Engineering (ICSE °22), May
21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3510003.3510113

1 INTRODUCTION

Software vulnerabilities are software security bugs, posing a severe
threat to software systems. They can be exploited by attackers and
result in a security breach or a violation of the system’s security pol-
icy; for example, attackers can control the system or acquire private
data by exploiting a vulnerability. To share information pertain-
ing to publicly disclosed software vulnerabilities, the US National
Institute of Standards and Technology (NIST) builds the National
Vulnerability Database (NVD). These vulnerabilities are identified
by CVE (Common Vulnerabilities and Exposures) IDs, ¢ ining a
description, an estimation of the severity of the vulnerability, the
know affected software, and related references.

Recently, software supply chain security is increasingly impor-
tant for industrial companies as they usually use many OSS software
in their projects. Due to concern about vulnerabilities in project
dependencies, industrial companies often use Software Composi-
tion Analysis (SCA) tools (e.g., Snyk! and Whitesource?) to learn
about vulnerabilities in their dependencies. The output of these
SCA tools is based on CVE/NVD information. However, the soft-
ware versions of CVE vulnerabilities are not always reliable. For

Uhttps://snyk.io/
Zhttps://www.whitesourcesoftware.com/

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on May 10,2023 at 08:28:22 UTC from IEEE Xplore. Restrictions apply.

techniques!

A modified version of the SZZ by Kim et al. but:

I® The git blame is repeated beyond format
changes until reaching the commits that created
the blamed lines. This approach is supported by
both AST and string similarity matching.

Rationale

According to certain studies, many vulnerabilities
are foundational, i.e., introduced early in the project,
even before the first release.

L. Bao, X. Xia, A. E. Hassan and X. Yang, "V-SZZ: Automatic ldentification of Version Ranges Affected by CVE Vulnerabilities," 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), Pittsburgh, PA, USA, 2022, pp. 2352-2364, doi: 10.1145/3510003.3510113.
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How can we be sure VCC mining algorithms work as expected? We want our algorithm to minimize:
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Performance Indicators

How can we be sure VCC mining algorithms work as expected? We want our algorithm to minimize:

GRS The algorithm returned a commit that was not a real VCC.

L IEENELENEEY The algorithm did not return one (or more) real VCC.

From the Information Retrieval world, we commonly use these metrics to evaluate such approaches:

| correct N identified |
| identified |

Precision =

T r—— But how do we determine
- this “correct” set?

2
1 1

|
Precision = Recall

Recall =

F — measure =
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Building the Ground Truth

We need to build a ground truth (a.k.a. golden seft) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

' Exhaustive
Labeling

For each vulnerability, we manually inspect all the commits in the project and
assess wWhether it is a VCC. Complete but time-consuming.

(‘ Recommended when... j we want to be exhaustive (!) or just
want to analyze a few vulnerabilities.
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Building the Ground Truth

We need to build a ground truth (a.k.a. golden seft) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

8 Bisect-driven
\ Labeling

For each vulnerability, we run git bisect until we find at least one VCC. Inspired
by the Meneely et al. mining technique. Less complete but faster, reducing the
workload by a logarithmic factor.

(‘ Recommended when... j we don’t need a complete correct set,
and we have time to inspect.
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Building the Ground Truth

We need to build a ground truth (a.k.a. golden seft) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

Precision
Assessment

For each commit flagged as VCC by the algorithm, we inspect it to assess
whether it is a real VCC. This will not produce the correct set, but only correct n

identified. Hence, we are not aware of the “missed” VCCs.

(‘ Recommended when... j we are only interested in assessing
the precision.
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Building the Ground Truth

We need to build a ground truth (a.k.a. golden seft) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

‘ Developer-
== informed Oracle

For each vulnerability, we process the fixing commit message to retrieve
mentions of the culprit commit(s). Developers sometimes explicitly indicate the
commit where the vulnerability was introduced. This method has a fully automated
part based on NLP/text mining and an (optional) manual assessment part.

(‘ Recommended when... j we don’t need a complete correct set
and, we want developers’ experience.

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R. Oliveto. 2021. Evaluating SZZ Implementations Through a Developer-informed Oracle. In
Proceedings of the 43rd International Conference on Software Engineering (ICSE '21). IEEE Press, 436—447. https://doi.org/10.1109/ICSE43902.2021.00049
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Building the Ground Truth

We need to build a ground truth (a.k.a. golden seft) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

‘ Developer-
== informed Oracle

EXAMPLE | CVE-2011-5321 (NULL pointer dereference) in Linux Kernel was fixed in commit
c2901f835 by just adding a single line of code.

£6 1869: if (!tty)
TTY : : : 1870: /* check whether we're reopening an existing tty */
. dI’0,0 driver reference in lty_open fail ' 1871: tty = tty_driver_lookup_tty(driver, inode, index);
path 1872: if (IS _ERR(tty)) {
. TP 1874 tty unlock();
When tty_driver_lookup_tty fails in tty_open, pess nutex unlock (&tty mutex):
we forget to drop a reference to the tty 1876 tty driver_kref_put(driver);
driver. This was added by commit 4a2b5fd [ ESEENEREE LS SRl

(Move tty lookup/reopen to caller). [...]

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R. Oliveto. 2021. Evaluating SZZ Implementations Through a Developer-informed Oracle. In
Proceedings of the 43rd International Conference on Software Engineering (ICSE '21). IEEE Press, 436—447. https://doi.org/10.1109/ICSE43902.2021.00049
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Building the Ground Truth

We need to build a ground truth (a.k.a. golden seft) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

‘ Developer-
== informed Oracle

EXAMPLE | CVE-2011-5321 (NULL pointer dereference) in Linux Kernel was fixed in commit
c2901f835 by just adding a single line of code.

11 :
T'TY: drop driver reference in tty_open fail A_ccordlr_|g to the de_\_lelop?r YVhO
path fixed this vulnerability, this is a

When tty_driver_lookup_tty fails in tty_open, VCC (which involuntarily

we forget to drop a reference to the ity introduced the vulnerability while

driver. This was added by commit 4a2b5fd refactoring some code)
(Move tty lookup/reopen to caller). [...]  ~___ " O -

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R. Oliveto. 2021. Evaluating SZZ Implementations Through a Developer-informed Oracle. In
Proceedings of the 43rd International Conference on Software Engineering (ICSE '21). IEEE Press, 436—447. https://doi.org/10.1109/ICSE43902.2021.00049
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Available Tools
| )

Command-line tool written
iIn Java implementing the
standard SZZ, analyzing
GitHub repositories and

Jira issues.

Archeogit

Command-line tool written
In Python implementing the
SZZ by Perl et al.

SZZUnleashed

Collection of Python and
Java scripts implementing
the SZZ by Williams and

Spacco (not seen).

( )

Collection of Python
scripts replicating V-SZZ
by Bao et al.

[ ]

Python library for
repository mining,
including an
implementation of SZZ by
Kim et al.

PySZZ

Collection of Python
scripts implementing
several SZZ variants with
a uniform interface.




Isn't there
something
ready to use?
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Available Datasets
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Vulnerability Database of curated histories of 2,677 vulnerabilities of eight open-source
H S (ela"A [Tl projects. Built by class assignments in a Master’s degree course held at RIT.

Java Dataset of 100 VCCs of 71 known vulnerabilities affecting popular Java projects.
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Secret Life Dataset of 12,256 VCCs of 3,663 vulnerabilities affecting 1,096 open-source
Dataset projects. Built by running an SZZ variant by lannone et al. (not seen).
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Available Datasets
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Vulnerability Database of curated histories of 2,677 vulnerabilities of eight open-source
H S (ela"A [Tl projects. Built by class assignments in a Master’s degree course held at RIT.

Java Dataset of 100 VCCs of 71 known vulnerabilities affecting popular Java projects.
VCC Dataset Built by manually analyzing the history aided by blames on fixing commits.

%

N

Secret Life Dataset of 12,256 VCCs of 3,663 vulnerabilities affecting 1,096 open-source
Dataset projects. Built by running an SZZ variant by lannone et al. (not seen).

il I Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.
Dataset Built by running an SZZ variant by Aladics et al.
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Available Datasets

Vulnerability

The Vulnerability History Project Vulnerabilities Code Tags ¥ More ¥

History Project
The Vulnerability History Project

A museum of mistakes
to help us engineer secure software

Browse Vulnerabilities

.k‘

Every blunder has a
backstory

You've seen it. Another vulnerability.

Heartbleed. Shellshock. Rowhammer. Spectre. Meltdown.
X WannaCry. Log4Shell. Always a terrifying name. Always an }
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Available Datasets

Vulnerability

The Vulnerability History Project Vulnerabilities Code Tags ¥ More ¥

CVE-2017-12615

History Project

()
| 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Vulnerability-contributing commit for CVE-2017-12615: changes new-developer refactors ‘4 Origin to Fix
Phase 1: Setting eol and mime types ! £ m
July 20th, 2006 same-directory X

In Apache Tomcat on Windows, an attacker could upload a JSP (JavaServer Page, essentially a web page with java
code) that would be later executed by the server. This worked if a "/" was added at the end of the file extension.

, o
_._ ’ :&: X ..................................

'(((EG\\

M Mistakes Made | ® TagNotes @Fix @ VCC [OCurator Notes ()Curate B Articles



https://vulnerabilityhistory.org/
https://tinyurl.com/java-vccs
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle
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Vulnerability

History Project

Available Datasets

M Mistakes Made | ® TagNotes | @Fix @ VCC ([ Curator Notes

CWE-650: Trusting HTTP & Language: Java
Permission Methods on =
the Server Side
Lesson: Distrust Input Lesson: Least Privilege
File input was missing They should be checking
some sanitization, as using a auth privileges at all times
"/" would allow the malicious and not let the file where the
file to go through to the server. vulnerability is to impact the

rest of the program.

Lifetime: 5+ years Project: Tomcat
4039.3 days, or 11.1 years

VCC

() Curate I8 Articles

Lesson: Code Refactors
129 refactors took place
during the vulnerability.

Se% Lesson: Too Many Cooks
@& 64 different developers

made commits to the files

fixed for this vulnerability.

Tomcat subsystem:
resources



https://vulnerabilityhistory.org/
https://tinyurl.com/java-vccs
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle
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Available Datasets

Vulnerability

History Project VHP can be mined In several ways

RESTFul API Ad Hoc Tool

Retrieving data with simple N— The organization in GitHub offers

HTTP requests. a dedicated command-line tool.

The list of vulnerabilities is
available in a repository of its
organization in GitHub.



https://vulnerabilityhistory.org/
https://tinyurl.com/java-vccs
https://github.com/sesalab/OnlineAppendices/tree/main/TSE21-VulnerabilityLifecycle
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MSR for Vulnerability Prediction — Vulnerability-contributing Commits

Key Characteristics of VCCs

VCCs vs non-VCCs
A case study on Apache HTTP Server with 68 post-release vulnerabilities and 124 VCCs.

Large commits might increase the chance of
contributing to a vulnerability.

Changing other developers' code might increase the
chance of contributing to a vulnerability.

Vulnerabilities are more likely to be added when
modifying existing files rather than creating new files.

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Definition &
Characteristics of VCCs
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Definition &
Characteristics of VCCs

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach

Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

duh -
& — 7 — o0 &
Post-release Fixing Manual ~—~—
vulnerability commit(s) analysis

“mmh, not |
convinced” *

‘ Updated script ‘ l
T “ GTM” T A R
¢ —— [t oiseer] — g
VCC VCC? Assisted

binary search Vulnerable code
regions (Hunks)

Meneely et al. technique
(git bisect)

detection script
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Mining VCCs: A First Approach

Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

duh -
& — 7 — o0 &
Post-release Fixing Manual ~—~—
vulnerability commit(s) analysis

detection script

“mmh, not | |
convinced” *

‘ Updated script ‘ l
T “ GTM” T A R
¢ —— [t oiseer] — g
VCC VCC? Assisted

binary search Vulnerable code
regions (Hunks)

Meneely et al. technique
(git bisect)

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

SZZ by Kim et al.
N — et — 2] —
- ‘ git blame /— s
Project Bug Last buggy = £
Tracker Bug Report revision Annotated l
file(s) D D A
l I . Candidate
+ D BICs
®—>69—>/‘—>_g1td1ff—>f_ |
Project Commit-issue  Fix Commit Polished . .
History Linkage Changed BICs
Lines

SZZ algorithm and
variants (git blame)
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VCCs vs non-VCCs
A case study on Apache HTTP Server with 68 post-release vulnerabilities and 124 VCCs.
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contributing to a vulnerability.

Changing other developers' code might increase the
chance of contributing to a vulnerability.

Vulnerabilities are more likely to be added when
modifying existing files rather than creating new files.

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: A First Approach

Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

$ — 7/ — oo &

Post-release Fixing Manual ~—~— Ad hoc
vulnerability commit(s) analysis detection script
“mmh, not | |
convinced” *
‘ Updated script ‘ l

VCC?

Assisted

T “LGTM” T A A
¢ - @ — [gitoisect | — =
VCC

binary search Vulnerable code

MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

SZZ by Kim et al.
'Y b AN
- lgl ‘—> git blame| — [[— e
Project Bug Last buggy = ;
Tracker Bug Report revision Annotated l
file(s) D D A
l I . Candidate
BICs

©— @ — »— Eran—] |

Project Commit-issue  Fix Commit Polished . .

History Linkage Changed BICs
Lines

regions (Hunks)

Meneely et al. technique
git bisect)

A. Meneely et al., "When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits," 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, USA, 2013, pp. 65-74, doi: 10.1109/ESEM.2013.19.

Definition &
Characteristics of VCCs

MSR for Vulnerability Prediction — Validating VCC Mining Algorithms

SZZ algorithm and
variants (git blame)

Building the Ground Truth

We need to build a ground truth (a.k.a. golden set) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

‘ Developer-
= informed Oracle

For each vulnerability, we process the fixing commit message to retrieve
mentions of the culprit commit(s). Developers sometimes explicitly indicate the
commit where the vulnerability was introduced. This method has a fully automated
part based on NLP/text mining and an (optional) manual assessment part.

“ Recommended when... ] we don’t need a complete correct set
and, we want developers’ experience.

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R. Oliveto. 2021. Evaluating SZZ Implementations Through a Developer-informed Oracle. In
Proceedings of the 43rd International Conference on Software Engineering (ICSE '21). IEEE Press, 436—447. https://doi.org/10.1109/ICSE43902.2021.00049

Performance Metrics &
Ground Truth
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Now let’s see how we can retrieve VCCs from project histories.

Unnamed Technique by Meneely et al.

b a
$ — 7 — oo &
Post-release Fixing Manual Ad hoc
vulnerability commit(s) analysis detection script
“mmh, not | |

convinced” *

‘ Updated script ‘ l
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VCC
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binary search
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MSR for Vulnerability Prediction — Mining VCCs

Mining VCCs: Borrowing from the Bug World

The SZZ algorithm is quite intuitive, but, despite its simplicity, it has been a revolution in the MSR world. Yet, all
that glitters is not gold: it has some problems.

SZZ by Kim et al.
= oo AN AN
B - =
lgl ‘ — |git blame| — ZE e
Project Bug Last buggy 77— a
Tracker Bug Report revision Annotated l
file(s)

l I HE A

. Candidate
+ BICs
0—>69—>}—> git diff | — [t l

Project Commit-issue Fix Commit Polished . .
History Linkage Changed BICs
Lines

SZZ algorithm and
variants (git blame)

Available Datasets

Vulnerability

History Project

Building the Ground Truth

We need to build a ground truth (a.k.a. golden set) that is the “standard” for evaluating the algorithms. In
other words, a dataset of true VCCs and non-VCCs. We can employ some methods:

-

Database of curated histories of 2,677 vulnerabilities of eight open-source

O Developer-
projects. Built by class assignments in a Master’s degree course held at RIT.

"W informed Oracle

Dataset of 100 VCCs of 71 known vulnerabilities affecting popular Java projects.
Built by manually analyzing the history aided by blames on fixing commits.

Java
VCC Dataset

%

For each vulnerability, we process the fixing commit message to retrieve
mentions of the culprit commit(s). Developers sometimes explicitly indicate the
commit where the vulnerability was introduced. This method has a fully automated
part based on NLP/text mining and an (optional) manual assessment part.

o

Secret Life
Dataset

Dataset of 12,256 VCCs of 3,663 vulnerabilities affecting 1,096 open-source
projects. Built by running an SZZ variant by lannone et al.

“ Recommended when... ] we don’t need a complete correct set

and, we want developers’ experience.

FrontEndART
Dataset

Dataset of ~700 VCCs of 564 vulnerabilities affecting 198 Java projects.
Built by running an SZZ variant by Aladics et al.

Available Tools &
Datasets

G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and R. Oliveto. 2021. Evaluating SZZ Implementations Through a Developer-informed Oracle. In
Proceedings of the 43rd International Conference on Software Engineering (ICSE '21). IEEE Press, 436—447. https://doi.org/10.1109/ICSE43902.2021.00049

Performance Metrics &
Ground Truth
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(Some) Open Challenges

e e e —_ - - - —— - = = S

: Non-code related VuInerabllltles ’

Not all vulnerabilities are caused by coding mistakes. Some of them are
caused by improper conflguratlons of, even wWorse, deS|gn ISSUes.

- ~ Tangled Changes

Not all fixing commits are focused on fixing the vulnerability: other ’
CoIIateraI act|V|t|es may be done

e e ——— e e e — e —— e —— e — P — —_— — - -

( — - I e __ — -

| Irrelevant Changes

Not all lines changed are directly related to the vulnerabillity, e.g., }
addltlon/removal of import statements parameters reorderlng, etc |

e — — ——— —— —_— — = — _ —
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(Some) Open Challenges

| Non-code related VuInerabllltles

_ e —_ - - - —— - = = —- = — =

|
* Not all vulnerabilities are caused by coding mistakes. Some of them are ’

|  Tangled Changes

caused by improper conflguratlons of, even wWorse, deS|gn ISSUes.

1 \
* Not all fixing commits are focused on fixing the vulnerability: other ’

CoIIateraI act|V|t|es may be done

Not aII lines changed are directly related to the vuInerablllty, e.d.,

J L Irrelevant Changes -

~ Migrated Reﬁos R

e — — ——— —— —_— —

#

Many “old” projects were migrated from another VCS (e.g., svn to git), so

thelr hlstory mlght be mcomplete (e g the initial commlt |s enormous

= ——— = — —
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