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With the rate of discovered and disclosed vulnerabilities escalating, researchers have been experimenting
with machine learning to predict whether a vulnerability will be exploited. Existing solutions leverage
information unavailable when a CVE is created, making them unsuitable just after the disclosure. This paper
experiments with early exploitability prediction models driven exclusively by the initial CVE record, i.e., the
original description and the linked online discussions. Leveraging NVD and Exploit Database, we evaluate
72 prediction models trained using six traditional machine learning classifiers, four feature representation
schemas, and three data balancing algorithms. We also experiment with five pre-trained large language
models (LLMs). The models leverage seven different corpora made by combining three data sources, i.e., CVE
description, Security Focus, and BugTraq. The models are evaluated in a realistic, time-aware fashion by
removing the training and test instances that cannot be labeled “neutral” with sufficient confidence. The
validation reveals that CVE descriptions and Security Focus discussions are the best data to train on. Pre-
trained LLMs do not show the expected performance, requiring further pre-training in the security domain.
We distill new research directions, identify possible room for improvement, and envision automated systems
assisting security experts in assessing the exploitability.
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1 INTRODUCTION
Software vulnerabilities represent serious threats to software dependability, allowing malicious
users to attack its confidentiality, integrity, or availability [39, 69]. Vulnerabilities require specific
methods and techniques to be detected [7, 62] and removed [18] promptly to avoid undesired
consequences [32]. However, not all vulnerabilities are the same, as their exploitation may require
different expertise and may have variable consequences. Since the number of newly discovered
vulnerabilities increases rapidly [38], both vendors (i.e., owners of vulnerable products) and clients
are interested in obtaining reliable feedback on the risk that a vulnerability may be exploited. The
availability of such feedback is useful for various tasks, including prioritizing security verifica-
tion [36, 81] and identifying suitable preventive actions to reduce the risk of an attack [30], such as
the replacement of vulnerable constructs or APIs [47, 56].

Researchers have envisioned novel methods to estimate the dangerousness of newly discovered
vulnerabilities. The most basic mechanisms are driven by the CVSS (Common Vulnerability Scoring
System1) “Base” score assigned. In particular, a vulnerability receiving a higher CVSS “Base” score
is deemed more severe than others. To a certain extent, it is considered to have a higher chance of
being exploited soon. Unfortunately, such an assumption does not always hold: a higher severity
score does not necessarily imply a more likely exploitability, nor do lower scores denote less risk
of being exploited [1]. For instance, this is the case of the infamous Heartbleed bug (CVE-2014-
0160), whose CVSS 2.0 “Base” score was 5.0 (translating into medium risk), way lower than other
vulnerabilities that were never observed to be exploited in the wild [32]. The upgraded version
of CVSS, i.e., version 3.0, added a number of new metrics to capture additional aspects that were
neglected in the previous version and corrected some inaccuracies. The new and improved “Base”
score formula could address scenarios like the one observed for Heartbleed. Yet, this new version
still cannot be used as a proxy for the exploitability risk. Indeed, CVE-2014-6049 received a CVSS
3.0 “Base” score of 2.7 (i.e., low risk), but was exploited less than a week after its disclosure. Such a
score was even lower than the CVSS 2.0 “Base” score, i.e., 5.5. Therefore, it is unfortunate to note
that CVSS 3.0 does not solve all the issues affecting version 2.0. Moreover, there is no significant
correlation between CVSS “Base” score and the exploitability risk of a vulnerability. This alarming
lack of correlation also happens for the more specific “Exploitability” and “Impact” sub-scores—i.e.,
the partial metrics required to compute the final “Base” score. Further detail about the correlation
between the CVSS metrics and the risk of exploitability is available in the online appendix of this
paper [49]. In summary, the values of the CVSS metrics assigned to the vulnerabilities affecting a
system cannot provide a useful estimation of the probability of the system being attacked.

An alternative approach to gain insights on the risks associated with a vulnerability consists in
adopting various strategies based on machine [14, 17, 85] and deep [45] learning models. The goal
is to predict whether a new vulnerability will be exploited, either labeling it as “likely exploitable”
or estimating a probability of exploitation [51] using a number of predictors from different data
sources. In this respect, researchers have been using many sources of information connected to a
vulnerability, ranging from its brief description contained in the CVE (Common Vulnerabilities
and Exposures) record—i.e., a data structure containing all the information linked to a disclosed
vulnerability—to online mentions from social media or the dark web [2, 85]. The vast majority of the
proposed models rely on all the complete CVE information that were obtainable when the datasets
used for the experimentations were built, hence also including the data that became available days
or weeks after the official disclosure of a new vulnerability—for instance, CVE-2020-0583 received
the CVSS “Base” score only 10 days after the disclosure. Indeed, as soon as a new CVE is added to
the official database, it is only provided with a short description and at least one public reference,

1CVSS website: https://www.first.org/cvss
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as required by CVE [35]. Thus, all the CVSS scores, the appropriate CWE (Common Weakness
Enumeration2) and CPE (Common Platform Enumeration3) that have been leveraged so far for
exploitability prediction tasks cannot be used before the results of the in-depth analysis made by
security experts are available. During the period ranging from the vulnerability disclosure and the
expert’s analysis—which can even last about two months—the existing prediction models cannot
get these data from anywhere, and therefore are inoperable in practice. Developers are hence
left disoriented, without any estimate of the risk associated with the new vulnerability. However,
the phase immediately following the disclosure of a new vulnerability is the most alarming, as
practitioners must take countermeasures as soon as possible; therefore, even a small hint of its
possible exploitability would be beneficial to dedicate the right effort to its resolution. We recognize
the need for an exploitability analysis of software vulnerabilities to provide developers and security
experts with preliminary information that could be used to assess the dangerousness of a newly
disclosed vulnerability and immediately take appropriate preventive actions to limit the potential
harm of an attack.
In this work, we aim to investigate the effectiveness of early exploitability prediction models

that exclusively rely on what we refer to as “early data”, i.e., the data already available in the CVE
record of a just-disclosed software vulnerability, to determine whether it will be exploited in the
future. An early prediction model leverages only those pieces of information that were already
published before the disclosure date, i.e., the short description and the referenced online discussions,
e.g., mailing lists and security advisories, and in no way relies on further analyses performed
by security experts or additional data to be retrieved from the vulnerable system. Our goal is to
experiment with early exploitability prediction modeling to assess whether and to what extent
the dangerousness of a vulnerability can be estimated with sufficient confidence as soon as the
vulnerability is disclosed for the first time.

To achieve our goal, we first collect all known vulnerabilities and exploits in the National
Vulnerability Database (NVD) and the Exploit Database (EDB), respectively, at the time we
started this study, and enrich them with the data coming from the online discussions mentioning
them. Such data are joined in seven combinations to build the text corpus fromwhich the prediction
models extract the textual features. Then, we experiment with a total of 72 models, made from the
combination of six different machine learning (ML) algorithms, three data balancing settings, and
four different ways to encode unstructured text into features, and we investigate the employment of
five pre-trained Large Language Models (LLMs), to determine which is the best solution to employ
for this kind of task.
In addition, we evaluate all these models in a realistic scenario, i.e., simulating a real software

production environment to investigate whether they can be effective in practice. To do this, we
validate the models pretending to build and deploy them at different points in time, i.e., reference
dates, and we assess how their performance changes with the evolution of the software history.
In particular, we apply a time-aware validation mechanism, sorting the full dataset of CVEs by
disclosure date, and splitting it at the reference dates. At each round of validation, we use all the
data before the reference date to build the dataset fold for the round—this simulates the models’
deployment scenario in which all the information available from the past is leveraged for the
learning, and the base of knowledge grows over time. To evaluate the models, we split each fold
into training and test sets, ensuring that the vulnerabilities in the test set are published after those
falling into the training set. Then, we adopt a data labeling strategy similar to the one explained by
Jimenez et al. [54], i.e., we mark the training instances as “exploitable” only if they were exploited

2Common Weakness Enumeration: https://cwe.mitre.org
3Common Platform Enumeration: https://nvd.nist.gov/products/cpe
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before the train-test split date, and we mark the test instances as “exploitable” if they were exploited
before the reference date. However, we recognize that not all the information collected from the
past is always reliable. In fact, since vulnerabilities are exploited over time, the CVEs published
close to the reference date that were not exploited yet cannot be confidently labeled as “neutral”, as
no sufficient time has elapsed to let the first exploits arise. Therefore, we further clear the dataset
fold from those vulnerabilities falling into such an “uncertainty window” with no associated exploit
yet. This data labeling strategy—detailed in Section 3—aims to provide a more realistic evaluation
of the early exploitability prediction models.
The results show that the text from online discussions, particularly from Security Focus,

can significantly boost the effectiveness of prediction models that leverage only the CVE initial
description. All traditional ML models reached their best performance with vulnerability data
before 2010. Oversampling the training data generally benefits all models, which draw the best
performance when the features are weighted by their frequency (i.e., Term Frequency). The classifier
with the best trade-off is the Logistic Regression, reaching a weighted F-measure of 0.49 and
weighted MCC of 0.36. The most precise classifier is the Random Forest, while the one having
the highest recall is KNN. The pre-trained LLMs used as-is failed to perform well, behaving like
constant classifiers always predicting “neutral”.

Based on the results obtained, we envision a set of research directions that aim to (i) improve the
quality of exploitability prediction models with particular attention to the data quality—i.e., the
ground truth choice, the feature representation, etc.—and (ii) integrate exploitability prediction
models into existing vulnerability assessment pipelines to better support security analysts. The
experimented prediction models only assess the exploitability of publicly disclosed vulnerabilities
without addressing undisclosed vulnerabilities due to inaccessibility to information that enables
the prediction [13]. Our key contributions can be summarized as follows:

i An evaluation method to assess the effectiveness of early exploitability prediction models
that exclusively rely on the data available in a CVE record at the time of its public disclosure;

ii A data cleaning strategy to remove those data instances that cannot be labeled with
sufficient confidence since not enough time has passed since the vulnerability disclosure date.

iii A data collection procedure to mine and aggregate online discussion data referenced by
the external links in the CVE records, resulting in a novel dataset that researchers can use
for further analyses.

iv An empirical comparison of how different configurations of an ML pipeline can influence
the performance of an early exploitability prediction model, involving 72 traditional learning
algorithms, three balancing settings, and four feature representation techniques, and also
five pre-trained LLMs used as-is.

v A comprehensive dataset—which we publicly release [49]—containing information about
disclosed vulnerabilities (CVEs), the linked initial mentions in online sources like Security
Focus and BugTraq, and their public proof-of-concept exploits.

vi A reproducible pipeline for training, validating, and analyzing all the ML models imple-
mented as a collection of Python scripts, made available in an online appendix [49].

In this paper, we focus on the feasibility of building early exploitability prediction models,
evaluating their performance in a realistic setting. We highlight that our work is not intended
to provide practitioners with a ready-to-use solution, but rather to take the first steps into the
empirical investigation of early exploitability prediction, which can be finally put into practice
with further research effort spent by the community.

Structure of the paper. Section 2 presents background information on the life cycle of software
vulnerabilities, other than discussing the related literature and the limitations we aim to address.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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Fig. 1. The applicability moment of our exploitability prediction model (EPM) on the general vulnerability

life cycle, also compared with the applicability of other solutions in literature [2, 12, 14, 34, 51, 66, 85]. The

red line represents the delay between the moment a vulnerability is publicly disclosed and the CVSS analysis

made by experts.

Section 3 reports the research questions driving our work and the methods we applied to address
them, while Section 4 presents the results we observed. Section 5 further elaborates on the insights
of the study and the implications for researchers and practitioners. The potential threats to the
validity of the study are discussed in Section 6. Finally, Section 7 concludes the paper, outlining our
future research agenda.

2 BACKGROUND AND RELATEDWORK
2.1 Software Vulnerabilities Life Cycle
MITRE defines a software vulnerability as a flaw in a software component caused by a source
code weakness that malicious users can exploit to cause damage to the confidentiality, integrity,
or availability of the impacted components.4 According to this definition, a vulnerability is an
identifiable instance of a defect affecting the source code and is characterized by its life cycle inside
the flawed system. This life cycle starts with introducing the vulnerability in the system, meaning
that there is a certain point in the lifetime of a software product in which the vulnerability is—
involuntarily or voluntarily—introduced in the code [48]. The vulnerability is potentially exploitable
as soon as the flawed code is released, starting its exposure window [39]. After its insertion, the
vulnerability can be identified in several ways: internally through manual code inspection or
running static analysis tools [7, 96], or from external bug reports [19, 88] or online discussions
on public and independent channels (e.g., SecurityFocus).5 Once the vulnerability is discovered,
the recommended action should be to warn a larger audience about the security issue affecting
the software. To this aim, the vendor may request the allocation of a CVE record to have a unique
identifier and a standardized descriptor of that specific flaw, which third-party security experts
must approve. This certification step ensures that the reported vulnerability is valid and comes from
a trustworthy source, which is why an external reference describing the issue is mandatory. The
time ranging from the discovery to the public disclosure varies from vendor to vendor, depending
on the policy they choose to adopt [5, 19, 105].

4CVE Glossary: https://www.cve.org/ResourcesSupport/Glossary
5SecurityFocus website: http://online.securityfocus.com/bid
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After the official disclosure by CVE, another external party may provide deeper analyses on
the nature of the vulnerability, for example, by identifying the appropriate weakness type (CWE),
determining the affected vulnerable configurations (CPE), and estimating its exploitability and
potential impact. The famed framework CVSS—defined and managed by the Forum of Incident
Response and Security Teams (FIRST)—is commonly adopted to measure this latter aspect. The
CVSS standard defines three metrics groups (“Base”, “Temporal” and “Environmental” ) that capture
different aspects of a vulnerability, each containing a set of ordinal-scale metrics. The most relevant
ones belong to the “Base” group, which is meant to stay stable after the initial assessment—in
contrast with the “Temporal” and “Environmental” ones that are subject to continuous updates.
In particular, the “Base” metrics values can also be aggregated together to form a continuous
value ranging from 0 to 10, known as the “Base” score, that summarizes the overall severity of
the vulnerability. This score is computed using a conversion table by remapping each value to a
pre-defined number. The formula is slightly different between versions 2.0 and 3.0—indeed, the
latter considers the user interaction and the degree of privileges required to carry out successful
exploitation. At the end of October 2023, the newest 4.0 version of CVSS will be publicly released,
and the process of adapting all the scores will begin. Despite its popularity, CVSS measurement
has not been exempt from criticism. One of its main weak points is its subjectiveness, caused by a
lack of clearly defined criteria for assigning the correct value to each metric. Indeed, the scoring
procedure is driven by a set of self-asked questions about the characteristics of a vulnerability. In
this respect, different analysts might interpret these criteria differently based on their knowledge
and experience, causing the final base score to vary among raters. Such a scenario might seriously
threaten vulnerability management since most strategies rely on the CVSS severity scores to
establish the order according to which the security issues must be handled [41]. Figure 1 shows the
typical life cycle of a software vulnerability, from the moment it is inserted in the code.
What is more, in a non-negligible number of cases, the CVSS measurement is not available

until several days after disclosing a CVE, which can be too late in certain unfortunate cases [35].
Specifically, if we consider all the vulnerabilities published before 2021, the average delay between
the disclosure and the first CVSS 2.0 measurement is 20 days. This delay becomes even greater for
CVSS 3.0, reaching 69 days. In particular, in 2018, the delay was beyond the average: 38 and 96 days
for CVSS 2.0 and 3.0, respectively. This phenomenon likely happens because the amount of newly
disclosed vulnerabilities is continuously increasing—over 15, 000 CVEs in the sole 2018—causing
the experts carrying out the CVSS measurement to have an increased workload—the results of
such analysis are reported in the online appendix of this paper [49]. Such a delay leaves developers
weaponless for a prolonged time: they have no support in deciding the best action to react to
recently-disclosed vulnerabilities.

These motivations laid the foundations of the works that employed machine learning to predict
the CVSS vector—or part of it—using the initial information available at disclosure time [35, 45, 55].
Despite this, it has been widely recognized that the CVSS “Base” score is not a valid proxy for the
exploitability risk of a vulnerability; therefore, it cannot be used as a recommendation mechanism
to guide vulnerability management [1, 46].

2.2 Exploitability Prediction Modeling
Several works have considered alternative ways to assess the risk of newly-disclosed vulnerabilities
in the last decade, leveraging many data types extracted from different sources. Bozorgi et al. [14]
have been among the first to use machine learning to predict the exploitability of known vulnerabil-
ities based on a large variety of metadata extracted from the Open Sourced Vulnerability Database
(OSVDB) and the CVE List. They trained an SVM-based binary classifier to predict whether a given
vulnerability is likely to be exploited in the (near) future, using a dataset of over ten thousand CVE

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.



Early and Realistic Exploitability Prediction 1:7

records disclosed between 1991 and 2007. Their model used a wide spectrum of predictors, ranging
from numerical features—e.g., the CVSS metric values, the disclosure date—to the binary occurrence
(presence/absence) of the tokens extracted from all the text fields using the bag-of-words (BoW)
method—e.g., the CVE description, the product name, the list of external references. They labeled
as “exploitable” (positive class) those vulnerabilities that indicated their exploitation status in their
metadata, leaving the rest as “unexploitable” (negative class). They provided two validations: one in
an offline setting—i.e., splitting the entire dataset into training and test sets randomly—and another
one in an online scenario—i.e., re-training the model multiple times using only the vulnerabilities
disclosed before a given date. In the former case, they observed a very high accuracy (≈ 90%), while
in the latter, the model stabilized around 75% in the latest rounds. Furthermore, they compared the
SVM’s score (i.e., the fitted model without the decision function) with the CVSS exploitability score
of each vulnerability in the dataset, observing that the latter is not correlated to the classifier’s
scores, and highlighting the poor significance of this metric value.

This work inspired many other empirical studies that investigated the performance of different
learning algorithms—e.g., Logistic Regression and Random Forest [12]—and data sources to
build the ground truth—such as Exploit Database or Symantec Attack Signatures [34]—
both leveraging the metadata found in the CVE records. Lyu et al. [66] experimented with more
sophisticated natural language processing (NLP) techniques and a character-level Convolutional
Neural Network (CNN) to predict the exploitability using only the textual description associated
with each CVSS value. Although most works treated the problem as a classification task, Jacobs et
al. [51] presented the Exploitability Prediction Scoring System (EPSS) that estimates the probability
that a given disclosed vulnerability will be exploited in the following 12 months using a Logistic
Regression model. Instead of relying on traditional feature extraction techniques (e.g., Bag-of-
Words), they collected the number of occurrences of a curated list of tags extracted using the RAKE
tool [84]. Moreover, they navigated the external references reported in the CVE record and scraped
the text from the HTML pages to further expand the amount of data available in their dataset.

The use of textual data was further investigated in other studies, experimenting with alternative
ways to extract features and assign them values. Most of these studies relied on traditional informa-
tion retrieval (IR) weighting schemas, such as word counting or term frequency – inverse document
frequency (TF-IDF) [2, 34, 80, 85], while others exploited NLP techniques, such as word2vec mod-
els [71], to provide a compact representation of the words in a document corpus [45, 66]. Sabottke
et al. [85] mined text explicitly mentioning CVEs from Twitter to expand the pool of predictors.
Besides the traditional word counting, they also computed additional metrics from the tweet statis-
tics, such as the number of retweets and replies. Similarly, Almukaynizi et al. [2] used the mentions
in the dark web assigning to each extracted token their TF-IDF weight. Apparently, only Jacobs et
al. [50] contemplated the text contained in the URLs in CVE records to widen the feature set but did
not provide any detail on how they mined the HTML pages. Thanks to the recent advances in Large
Language Models (LLMs), Yin et al. [100] experimented with a neural network based on BERT
architecture [29], which they called ExBERT (Exploit BERT) leveraging only the CVE description.
To develop such a solution, they added a pooling layer and a Long-Short Term Memory (LSTM)
classifier on top of a pre-trained uncased base BERT.6 The full model was fine-tuned on a dataset
built using the information retrieved from NVD and Exploit Database. Each input text (i.e., the
CVE descriptions) was encoded using the WordPiece tokenizer [98], which is suitable for text
containing low-frequency words like CVE descriptions. The authors decided not to include the
CVSS scores in the input text, as they are not correlated with the presence of an exploit in the
Exploit Database. Despite obtaining encouraging results, i.e., ∼90% F-measure, we believe that

6Avalable at: https://github.com/google-research/bert
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Table 1. Summary of the main works experimenting with machine learning to predict the existence of a

vulnerability exploit in the future. The main novelty points are reported in boldface.

Study Data Sources Feat. Data Feat. Representation Early Classifiers Validation Evaluation

Bozorgi et al. [14] OSVDB, CVE List CVE Metadata,
CVSS, etc.

Numeric, Bag-of-Words No SVM Random and Time-
aware Iterative

Accuracy

Bhatt et al. [12] NVD, EDB CVSS, CWE, Soft-
ware Type

Categorical No Several Random Iterative Accuracy

Edkrantz et al. [34] NVD, EDB, Rapid7,
Symantec

CVE Metadata,
CVSS, etc.

Numeric, Categorical,
Bag-of-Words

No Several Random Iterative Accuracy

Lyu et al. [66] NVD, EDB, etc. CVE Metadata Character Embedding No CNN Time-aware Non-
Iterative

F-measure

Jacobs et al. [51] NVD, EDB, Rapid7,
etc.

CVE Metadata,
URL Scraped

Bag-of-Words No LR Time-aware Iterative Precision, Recall

Sabottke et al. [85] NVD, EDB, Twitter,
etc.

CVE Metadata,
CVSS, Tweets

Bag-of-Words Partial∗ SVM Random Iterative Precision, Recall

Almukaynizi et al. [2] NVD, EDB, ZDI CVE Metadata,
CVSS, Dark Web

Bag-of-Words, Numeri-
cal, Categorical, Binary

Partial∗ Several Time-aware Non-
iterative

Precision, Recall, F-
measure

Yin et al. [100] NVD, EDB CVE Description BERT No LSTM Random Non-
iterative

Accuracy, Precision,
Recall, F-measure

Yin et al. [101] NVD, EDB CVE Description,
CVSS

BERT, Categorical No Several Time-aware Iterative Accuracy, Precision,
Recall, F-measure

Suciu et al. [93] NVD, BugTraq,
Twitter, etc.

PoCs, Tweets, etc. AST, Textual Unigrams Incremental∗∗ NN Time-aware Iterative Precision, Recall

This work NVD, EDB, BugTraq,
Security Focus

CVE Metadata,
URL Scraped

Bag-of-Words, BERT,
Word Embedding

Full Several Time-aware Iterative F-measure, Preci-
sion, Recall, MCC

“Feat.” = Feature, “SVM” = Support Vector Machine, “LR” = Logistic Regression,
“CNN” = Convolutional Neural Network, “NN” = Feed-forward Neural Network
∗Data between the disclosure and the first exploitation was not discarded.
∗∗Data published after the disclosure was used when available.

the experimental setup suffers from two main issues. First, the set of non-exploitable instances
(i.e., the vulnerabilities having no known exploit in the Exploit Database) were down-sampled to
match the number of exploitable instances, reaching an unrealistic balanced dataset, which also
affected the test set composition. Second, the WordPiece tokenizer was fitted on the entire dataset
before splitting it into train and test subsets, influencing the vocabulary with information that
was supposed not to be seen at that stage. In the end, the final scores were inflated, hindering the
realism of the model’s real performance.

Following a different strategy, Sabottke et al. [85] and Almukaynizi et al. [2] considered selecting
part of the information published before the date on which a CVE was exploited in the wild—
following the recommendation described by Reinthal et al. [80], who claimed that any realistic
exploitability prediction model should not leverage the data arriving after the exploitation. The use
of “future” data to predict data belonging to the “past” is just one of the limitations that Bullough et
al. [17] identified in manyworks on the matter; in this respect, the authors presented challenges for a
realistic machine learning-based exploitability prediction model. Previous studies have legitimately
considered the effect of the imbalance ratio, but the re-sampling algorithms were inappropriately
applied to the entire dataset, affecting the test sets as well [74]. Similar to the limitations found by
Reinthal et al. [80], many works used all the data found in the CVE records when they were mined,
including all the subsequent updates they received even after the exploitation. This approach is not
representative of what would happen in reality. Indeed, a realistic prediction should be executable
as soon as a new CVE is published, without waiting for the availability of additional metadata like
the CWE, the CVSS score, or the CPE, which are known to be added only some days or weeks
after the disclosure, as observed by Elbaz et al. [35]. To clarify such a concept, Figure 1 depicts the
moment from which a realistic exploitability prediction model should be employed when related to
the typical life cycle of a vulnerability.

2.3 Realistic Validation of Machine Learning Models for Security
In the context of vulnerability prediction modeling, Jimenez et al. [54] investigated the realism of
machine learning models when dealing with data having some form of temporal relationships. The
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authors shed light upon what they called the “perfect labeling assumption” that most researchers
adopt when training a vulnerability prediction model. According to this assumption, researchers
implicitly suppose that all kinds of information about any given vulnerability are always available
at any time. Under this assumption, all the models would exhibit optimistic results that will likely
contradict the models’ performance when they are put into production. To overcome this bias,
Jimenez et al. [54] proposed an alternative approach to evaluate a machine learning model’s
performance in a more realistic and reliable way. Firstly, whenever the data exhibits some form of
time relationship, the authors recommend the employment of a time-aware validation, which takes
into account the moment in which each piece of information becomes available. The models should
be trained on “past” data and tested on subsequent data, i.e., avoiding the use of any fully-random
validation strategies—such a recommendation is in line with those identified by Bullough et al. [17].
Then, the labels assigned to the data appearing in the training set should strictly reflect what is
known at training time, i.e., the date used to split the training and test sets, without leveraging any
future information. This approach is what they called “real-world labeling”, which adds more realism
to the models’ validation, making their results more faithful to those scored during the production.
Furthermore, they observed that instances in the negative class should be labeled as “neutral” rather
than “not vulnerable”, as the problem of vulnerability prediction is undecidable [58, 82].

Jimenez et al.’s considerations [54] were embraced by several subsequent works on vulnerability
prediction. Liu et al. [63] introduced the n-fold time-series validation, in which the dataset is sorted
by date and split in n+1 folds to perform n evaluation rounds. At each round i, the folds from 1 to
i are used as the training set, while the fold i+1 as the test set. A similar approach was followed
by Le et al. [60], who also considered an additional fold for the validation phase. Pornprasit and
Tantithamthavorn [75] considered the time constraints of vulnerability data availability. They
performed a time-aware validation by splitting the sorted dataset into two subsets: 80% of the
entries were used for the training phase and the remainder 20% for the testing phase. All the above
approaches led to observing a lower performance of the models compared to those reported in
time-agnostic experimental settings, as Rakha et al. [78] argued in previous work.
In the context of exploitability prediction, Yin et al. [101] tackled the “concept drift” problem

that can negatively influence the models’ credibility. Indeed, information about the existence of
exploits for vulnerabilities changes over time, i.e., a vulnerability can be exploited years after its
disclosure, with an inevitable impact on the labels assigned to each instance. Hence, they proposed an
incremental learning strategy called Real-time Dynamic Concept Adaptive Learning (RDCAL) that
trains and evaluates the models in an online learning scenario (i.e., when the models are re-trained
multiple times on time-ordered data) where the labels (i.e., the exploitability status) are determined
at each iteration rather than upstream. They experimented with this strategy using four classifiers,
achieving comparable performance with the traditional batch learning schema. Similarly, Suciu et
al. [93] observed that additional vulnerability data becomes available over time, e.g., write-ups, PoCs,
and social media discussions, which often provide meaningful information about the likelihood
of exploits happening in the future. Driven by the intuition that the probability of observing an
exploit changes over time, they proposed a random variable called Expected Exploitability. Instead
of deterministically labeling a vulnerability as “exploitable” or “not exploitable”, they considered
exploitability as a stochastic process, describing the likelihood over time that a functional exploit
will be developed for the considered vulnerability. Such Expected Exploitability metric can be
computed leveraging supervised machine learning based on historical patterns observable for
similar vulnerabilities, and be updated continuously by adding new information to the model as
soon as it becomes available, e.g., CVSS metrics can be used for updating the prediction as soon as
they are published. They evaluated the precision and recall of their classifier against five baseline
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models, observing that Expected Exploitability outperforms existing metrics for exploitability
prediction, and improves over time.

2.4 Our Contribution
We believe all the considerations made for realistic vulnerability prediction modeling hold for
exploitability prediction as well—for instance, we cannot look at the exploits that appeared after the
training time to label a vulnerability as “exploitable” or “neutral” in the training set. In this work,
we evaluate several early exploitability prediction models that leverage only the description and
the online discussion data available at the disclosure time of a new vulnerability. We evaluate the
models using a time-aware realistic validation schema: we make several training and testing rounds
where we (i) clear out the instances for which the labeling cannot be done with sufficient confidence,
(ii) assign the labels (“exploitable” and “neutral” ) with an eye to the recommendations by Jimenez et
al. [54], (iii) prepare the text corpora from different sources, (iv) extract the features according to the
vocabulary fitted on the training data, (v) adjust the training set using data balancing algorithms,
(vi) train and test the models.

Compared to previous work on the matter, our novelty points include: (i) the creation of a
full early exploitability prediction pipeline that only leverages the information available at the
vulnerability disclosure time; (ii) the use of online discussion from Security Focus linked via
references reported in the CVE records; (iii) the analysis of the model performance with the MCC
metric, which considers all four quadrants of the confusion matrix; (iv) the experimentation with
word embedding to represent textual features; (v) the employment of pre-trained LLMs in the task
of exploitability prediction.
Table 1 reports a summary of the main works on exploitability prediction and highlights the

core differences between the existing literature and our work.

3 EMPIRICAL STUDY DESIGN
In Section 3.1, we formulate the goal of our study according to the Goal-Question-Metric (GQM)
template [95]; from this goal, we distilled our research questions (RQs). In Section 3.2, we describe
the steps we followed to collect the data needed to fuel the prediction models. In Section 3.3,
we report the details of the models that were selected to participate in our experiments, and in
Section 3.4 we explain how we trained and evaluated them. Lastly, in Section 3.5 we focus on the
implementation details regarding the models, and we describe the infrastructure we employed to
run our experiments.

3.1 Study Goal and ResearchQuestions
The goal of this empirical study was to investigate the performance of machine learning (ML)-based
classifiers to predict the exploitability of a just-disclosed vulnerability, with the purpose of providing
early feedback on the exploitability of new vulnerabilities in a realistic scenario. The perspective was
of both practitioners and researchers. The former are interested in obtaining as much information
as possible to (i) have an initial assessment supporting the CVSS measurement and (ii) understand
when and how the vulnerabilities afflicting their applications must be handled. The latter are
interested in (i) comprehending the predictive capabilities of textual data—obtained from online
discussions about the vulnerabilities written in natural language—represented in different ways
and (ii) assessing the effectiveness of different learning configurations.

To the best of our knowledge, the current research in exploitability prediction has always involved
all the data available in CVE databases at the time of the study when building the dataset used by
the experimented classifiers. This scenario caused the models to rely on subjective measures like
the CVSS scores to make their predictions. However, in a real-world scenario, such information is
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only made available at a non-negligible distance from the CVE disclosure date [35]—on average, 20
days after the disclosure by the year 2021. We hypothesize that a realistic prediction model should
only leverage early data, i.e., those pieces of information available at the disclosure time, as soon as
a vulnerability is made public through a CVE record.
Therefore, our empirical investigation focused on employing ML algorithms to train classifi-

cation models that recognize potentially exploitable vulnerabilities using exclusively early data.
We observed that whenever a new vulnerability is discovered, the ordinary mechanism to raise
awareness about it consists of opening a free commentary about it on public mailing lists or other
similar discussion channels [5, 19]. Such data sources contain valuable information that may provide
additional insight into the seriousness and impact of the vulnerability, e.g., a crash stack trace [90],
the reproduction steps [20], or even code snippets showing that an exploit is feasible in principle
(a.k.a. Proof of Concepts, PoCs) [92]. Whilst involving data from multiple sources could provide
a more comprehensive perspective of the problem [103, 106], the effect on the accuracy of the
prediction models is not always positive [67]. Indeed, the information in each source might have
evident contradicting information [25] that would not allow the models to distinguish between
“exploitable” and “neutral” vulnerabilities. Hence, we are interested in investigating how different
combinations of data from multiple sources affect the models’ performance. We asked:

ÛRQ1.What is the impact of the early data source combination on the performance of ML-based
exploitability prediction?

Extracting relevant information from vulnerability data sources that allow themodels to recognize
exploitable vulnerabilities is not straightforward. Not only do such sources predominantly contain
unstructured text, but also, no automated mining tool that extracts the relevant pieces of information,
e.g., the code snippets isolated accurately, exists. The only available solutions can only work with
traditional bug reports and for specific programming languages, such as Infozilla [10] that only
works for bug reports in Java. We must rely on text processing techniques that automatically
determine the features from a corpus of natural language text [11] to let the prediction models
learn from unstructured text.
There are many ways to achieve such a task, that we group into two main categories: (1) those

encoding the tokens found in the corpus—after adequate pre-processing—as individual features,
and (2) those that learn how to represent a given text as an embedding. In the first case, once
the textual features, e.g., tokens or words, are extracted, they are weighted according to different
mechanisms, such as by counting the number of times a certain feature appears in a document in
the corpus, or by measuring the frequency of that token over the entire corpus [8]. The number of
resulting features cannot be controlled directly and heavily depends on the actual content of the
documents in the corpus and on the pre-processing steps taken before, e.g., stemming. In the second
case, the features do not represent specific textual elements, but they are “latent variables” that the
model infers from the input corpus [59, 71]. Unlike the first category of techniques, the size of the
embeddings is generally decided upstream before launching the embedding algorithm. The choice
of the specific text representation technique can greatly impact the models’ performance [28, 43].
Furthermore, we believe other elements can influence the models’ performance that are worth

investigating, such as the choice of the specific learning algorithm [94] or the use of data balancing
algorithms to deal with the imbalance between “exploitable” and “neutral” instances [74]. Thus, we
asked:

ÛRQ2.What is the performance of ML-based early exploitability prediction under different learning
configurations?
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Due to the recent advancements in the field of Natural Language Processing (NLP) and the
popularity of pre-trained Large Language Models (LLMs), we also wanted to assess their suitability
for such a task, as experimented by Yin et al. [100]. Such models come with pre-trained weights
learned in a self-supervised manner from large corpora of text not directly related to the specific
tasks, e.g., general English text and/or examples of code written in different programming languages.
The advantage of such models stands in their ability to determine the representation for the input
(depending on what was seen during the pre-training stage) and return the prediction in a single
shot. Therefore, we formulated two sub-questions to answer RQ2, the first one investigating the
performance of several ML models made of the traditional key elements—i.e., feature representation,
training data balancing, and learning algorithm—while the latter focused on the use of end-to-end
pre-trained LLMs.

Û RQ2.1. What is the performance of ML-based early exploitability prediction under different
learning configurations using traditional ML?

Û RQ2.2. What is the performance of ML-based early exploitability prediction under different
learning configurations using end-to-end pre-trained LLMs?

3.2 Data Collection
The context of this empirical study was made of publicly disclosed vulnerabilities accompanied
by references to online discussions mentioning them, such as public mailing lists and security
advisories. Our literature review found no readily available dataset with all the data we need, i.e.,
the text of online discussion linked to disclosed vulnerabilities and the dates when the vulnerability
was disclosed and exploited. Therefore, we adopted a systematic data collection procedure to link
all the existing known vulnerabilities to public websites where they had been likely discussed for
the first time before the official disclosure date—in the rest of the paper, we also use the wording
“publication date” when referring to the date on which a CVE record is made accessible. Then, we
mined a large set of public scripts and PoCs available online and linked them to the vulnerabilities
they exploited to carry out (pseudo–)realistic attacks. Figure 2 depicts all the steps (from 1 to 7) we
took to collect the data needed to answer our research questions, each detailed in the following.
Table 2 summarizes the collected data, reporting how much information we could retrieve from
each considered data source. The scripts to run the entire data collection procedure are available in
the online appendix of this paper [49].

3.2.1 Mining Known Vulnerability Data. We relied on the National Vulnerability Database (NVD),7
a comprehensive catalog of disclosed vulnerabilities reported in the form of CVE records. NVD
enriches the upstream CVE List managed by MITRE8 by adding the CVSS vectors, the labeling of
known affect software versions via CPE, etc. For such reasons, NVD has been the basis of many
empirical studies on software vulnerabilities, being considered a reliable source of high-quality
information [48, 54, 65, 72]. Our study did not target any specific platform or programming language,
so we collected all existing vulnerabilities available in NVD at the time of the study. Thus, we
downloaded the full dump of NVD curated by the CVE Search project9 on November 03, 2021,
gathering 148,299 CVE entries (Step 1 in Figure 2). We pre-processed this raw dataset to ensure
that the data quality was suitable for our study. In particular, we filtered out those entries that were
(i) malformed (e.g., the identifier did not point to a really-existing CVE record), (ii) rejected (i.e.,

7NVD website: https://nvd.nist.gov
8CVE List website: https://cve.mitre.org
9CVE Search dump: https://www.cve-search.org/dataset
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Fig. 2. Overview of the data collection process employed. The process focuses on how we collected the data

from the various sources, i.e., NVD, CVE List, Exploit Database, Security Focus, and BugTraq.

the CVE identifier was allocated but never approved at the final stage), or (iii) lacking external
references. We could recognize vulnerabilities falling in those cases by inspecting the content of
the dump: malformed CVE identifiers did not adhere to the pattern CVE-XXXX-YYYY; rejected CVEs
had a clear statement of their rejection in the description; CVEs lacking external references were
missing a list of links in the HTML page on CVE List. In the end, the three filters led to the removal
of just 214, 135, and five entries, respectively (Step 2 in Figure 2), resulting in 147,900 valid CVEs.
Since we were interested in using only the information available at the disclosure time, we

retraced the change history of the CVE record stored in NVD; for each CVE we scraped the content
of its descriptive HTML page in NVD, as it contains a set of tables reporting the changes made to
the record and their dates. In doing so, we could fetch the original description that the CVE had
at the time it was first disclosed, so that we could use it within our early exploitability prediction
models in a realistic scenario—indeed, the models should not be allowed to use information that
was made available years after the disclosure. It is worth pointing out that the original date on
which a CVE record was created is not reported in NVD but rather on the CVE List website. Hence,
we mined the HTML pages in the CVE List website as well. The scraping of HTML pages of both
NVD and CVE List was supported by the BeautifulSoup library for Python.10

3.2.2 Mining Online Discussion Data. Any CVE record is equipped with a continuously updated list
of external reference URLs pointing to web pages concerning that specific vulnerability, e.g., online
discussions, official patches, bug reports. In this respect, our goal was to define an exploitability
prediction model that leverages only those references available at the disclosure time, as we believe
they could be the reason behind the allocation request of the CVE identifier. However, the references
in the NVD dump are not provided with the date they were added to the CVE records, preventing
us from knowing whether they have already been linked at the time of the record allocation or at a
later stage. We observed that the CVE Listwebsite maintains the references in a different way: each
link is labeled with a special keyword indicating its type—e.g., vendor advisory, mailing list—and
origin, i.e., the website it points to).11 Hence, we analyzed 714,854 CVE List references among all
the 147,900 CVE records (Step 3 in Figure 2). We observed that the most recurring keyword was BID
(SecurityFocus Bugtraq ID), which refers to security advisories published on the SecurityFocus

10BeautifulSoup website: https://beautiful-soup-4.readthedocs.io
11CVE References: https://cve.mitre.org/data/refs/index.html
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website (43% of CVEs had at least one reference to this category). Such a website has long been
considered a reliable source to report security bugs—each uniquely identified with a BID—and
tracks existing solutions and working exploits [38]. Moreover, its plain HTML structure allowed the
easy recovery of all the data using a simple HTML parser with the application of filters to exclude
those references published after the vulnerability disclosure date. For all these reasons, we ignored
the references listed in the NVD dump, navigated the BID-labeled URLs in CVE List, and parsed
the content of the HTML in the response using BeautifulSoup—this was the only available option
to recover such data, as SecurityFocus does not expose any accessible API. It is worth pointing
out that since February 2020, SecurityFocus has stopped publishing further BID advisories; hence
the URLs stored in the CVE records are actually inaccessible. We circumvented this limitation by
exploiting the Wayback Machine 12 service provided by the Internet Archive library [3], which
offers free access to many digital resources that were once available on the web. Therefore, we
queried the API exposed by the service that returns an active URL—stored in its archives—having
the same HTML content as the input URL (Step 4a in Figure 2).
We also observed that BID reports are commonly related to a discussion on a public mailing

list known as BugTraq, one of the most popular discussion boards where participants have
been conducting discussions on newly-discovered vulnerabilities since 1993. All the discussions
are held in natural language (commonly English) without following any specific text structure.
Among the discussions, the only consistency is the header containing the original publication date.
Consequently, we considered BugTraq references in addition to those labeled with BID. BugTraq has
encountered a similar fate to SecurityFocus, as it was shut down in 2020; yet, we still considered it
alongside SecurityFocus as it was referenced by a non-negligible number of the CVEs we selected
(14% CVEs had at least one BugTraq reference). All the discussions held in the past are now archived
by third-party websites, such as SecLists,13 from which we downloaded all the discussions pointed
by the CVE records in our context. To recover the missing mailing list discussions, we exploited the
format of the BugTraq identifiers, made of eight digits representing the publication day according
to the format YYYYMMDD, plus a short text summarizing the content of the discussion. Both the
year and the month allowed us to reach a page on SecLists containing the list of BugTraqs of
that period, from which we retrieved the entry that had the highest similarity—using the Gestalt
Pattern Matching [79]—with the short text in the BugTraq identifier. Then, we mined the content
of the matched discussions leveraging BeautifulSoup (Step 4b in Figure 2). To summarize, 70,513
out of 147,900 CVEs had at least one BID or BugTraq type reference, linked to a total of 65,978
BID references and 26,387 BugTraq references. We considered these numbers sufficiently high to
address the research goals of our investigation.
Afterward, we made sure to discard the text of those BID and BugTraq references (i) published

after the CVE disclosure date or (ii) whose format did not allow to reliably recover their publication
date. This happened for 10,973 out of 65,978 BIDs and for 5,368 out of 26,387 BugTraqs. Although
these two filters caused some vulnerabilities not to have any BID or BugTraq reference, we still
did not discard them entirely, as the sole original description provided in the CVE record might
contain enough information to predict their exploitability, as observed in similar works [45, 66].
As a result of the process of retrieving input data for our investigation, we finally considered

three data sources, namely (i) CVE records, retrieved from CVE List, (ii) SecurityFocus Bugtraq
ID reports, restored from theWayback Machine, and (iii) discussions on the BugTraq mailing
list, collected from SecLists website. Each of these sources provided us with textual data that we
combined to perform our experiments, as explained in Section 3.3.

12Wayback Machine API: https://archive.org/help/wayback_api.php
13SecLists website: https://seclists.org
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Each text underwent a set of pre-processing steps to remove irrelevant pieces of information
and facilitate encoding textual features (Step 5 in Figure 2). In particular, we first employed a set
of regular expressions to detect and remove data that could negatively affect the process, such as
websites, URLs, e-mail addresses, PGP signatures and messages, hex numbers, and words containing
repetitions of the same letters for at least three times in a row [11, 45, 61]. Second, we applied the
lowercase reduction, removed non-alphabetic characters (punctuation and Unicode symbols), and
split the remaining content into tokens using the whitespace as a separator. Then, we removed
any English stop word [26, 91], applied the suffix stripping using the Porter’s stemmer [76], and
removed those terms having less than three characters.

3.2.3 Mining Exploit Data. The CVE references labeled as EXPLOIT-DB in the CVE List point
to Exploit Database (EDB in short),14 which is the most comprehensive collection of public
exploits and Proofs of Concepts (PoCs) that explicitly target known vulnerabilities. Navigating
these references could establish the links between the vulnerabilities and their exploits. However,
we observed that only a minimal set of CVE records had an explicit link to EDB (i.e., 7.9%), likely
owing to an improper curation of the CVE records—and not necessarily to a real lack of an exploit.
Hence, similarly to Bhatt et al. [12], we rebuilt the links crossing the opposite way, connecting all
the exploits in EDB to the affected CVEs using the metadata contained in the exploit entries. To
this aim, we downloaded the complete list of exploits at the date of November 03, 2021, from the
official GitHub repository15 to obtain the list of valid exploit identifiers, queried the EDB website,
and parsed the HTML pages—still using the BeautifulSoup library—of each exploit to collect the
target CVEs, if made explicit. Note that a single exploit or PoC may target more than one, often
related, vulnerability; similarly, more than one exploit may affect a single vulnerability. In the
end, a total of 47,742 exploits were collected, linked to 23,690 different CVEs, corresponding to
16.02% of the total CVEs with valid data (Step 6 in Figure 2). After connecting each CVE to their
exploits, we could obtain the dates on which the first exploit of the vulnerability described in the
CVE was uploaded in the Exploit Database. We collected all these dates and considered them as
the “exploitation dates” (Step 7 in Figure 2), which will be needed when building our ground truth
(see Section 3.4).

3.3 Model Selection
Once we had collected all the required data, which is summarized in Table 2, we could select the
prediction models subject to our experiments.
To answer RQ1, we first considered the textual data from the three sources selected—i.e., CVE,

SecurityFocus (SF), and BugTraq (BT)—individually to assess which one was the most helpful
in predicting the exploitability of the vulnerabilities. Then we combined them by means of string
concatenation to understand whether the data coming from multiple sources can let the models
have additional information on the vulnerabilities and improve their accuracy. Hence, we formed
four combinations, i.e., ⟨CVE + SF⟩, ⟨CVE + BT⟩, ⟨SF + BT⟩, ⟨CVE + SF + BT⟩. In the end, we tested
with a total of seven different combinations of data sources, which we call corpora from now on.

Then, regarding RQ2.1, we experimented with 72 traditional learning configurations, determined
by the combination of:

– Six machine learning algorithms, opting for the most adopted for training binary classifiers,
i.e., (i) Logistic Regression (LR) [70], (ii) Naïve Bayes (NB) [83], K-nearest Neighbors
(KNN) [104], (iv) Support Vector Machine (SVM) [24], (v) Decision Tree (DT) [16], and (vi)
Random Forest (RF) [15].

14EDB website: https://www.exploit-db.com
15EDB repository: https://github.com/offensive-security/exploitdb
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Table 2. Summary of the data collected from the considered data sources.

Description Count %
CVEs from NVD 148,299 –
Malformed 214 0.14%
Rejected 135 0.09%
No external references 5 0.003%
w/ Valid Data 147,900 99.73%
w/ Discussion 70,513 47.55%
↩→ on SecurityFocus 64,120 43.24%
↩→ on BugTraq 21,540 14.52%
↩→ on both SecurityFocus and BugTraq 15,147 10.21%
w/ PoC in Exploit Database 23,690 15.97%
URLs referenced by CVEs 714,854 –
SecurityFocus Discussions 65,978 9.23%
↩→ Discarded 10,973 1.53%
↩→ Valid 55,005 7.69%
BugTraq Discussions 26,387 3.69%
↩→ Discarded 5,368 0.75%
↩→ Valid 21,019 2.94%

– Four feature representation schemas, three of which encode each token found in training set
as an independent feature—i.e., the simple word counting (a.k.a. Bag-of-Words, BoW), term fre-
quency (TF), term frequency-inverse document frequency (TF-IDF)—and one that automatically
learns embeddings from the training set—i.e., doc2vec (DE).

– Three ways for managing the data imbalance during the training stage, i.e., leaving the data
untouched (Original), over-sampling with SMOTE [21], and under-sampling with NearMiss
(version 3) [102].

Similarly, for RQ2.2, we involved five pre-trained LLMs, all based on the BERT architecture [29].
Specifically, we selected: (i) DistilBERT [87], (ii) ALBERT [57], (iii) XLM-RoBERTa [23], (iv)
CodeBERT [37], and (v) CodeBERTa [64]. We selected such models because of their noticeably
different pre-training backgrounds. Indeed, all models we selected have a general understanding
of the English language, which was required as the text of CVE descriptions and the other data
sources we considered, i.e., SecurityFocus and BugTraq, were also in English as well. Both
ALBERT and DistilBERT were pre-trained on BookCorpus16 and English Wikipedia17 corpora
(just like the vanilla BERT), while XML-RoBERTa was pre-trained on CommonCrawl18 corpus
containing text from 100 languages. Yet, vulnerability data often include elements that are not part
of a common text in the English language, such as code snippets and many punctuation characters;
for this reason, we also included two models having experience with programming languages,
i.e., CodeBERT and CodeBERTa. Such models were pre-trained on CodeSearchNet19 corpus,
containing examples of methods from six programming languages, as well as their associated
documentation (e.g., JavaDoc), generally written in English. To allow the models to be fine-tuned
on our binary classification downstream task, we equipped them with a linear layer on top of the
pooled output.

16BookCorpus corpus: https://yknzhu.wixsite.com/mbweb
17English Wikipedia corpus: https://www.english-corpora.org/wiki/
18CommonCrawl corpus: https://commoncrawl.org/
19CodeSearchNet repository: https://github.com/github/CodeSearchNet
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To better contextualize the models’ performance, we also involve four baseline models, meant
to determine the real usefulness of the non-trivial models. We selected: a Random (RND) classifier,
stating that a vulnerability is “exploitable” with 50% probability, a Pessimistic (PES) classifier, always
predicting that a vulnerability is “exploitable”, an Optimistic (OPT) classifier, always predicting
that a vulnerability is “neutral”, and a Stratified (STR) classifier, predicting the exploitability with a
probability equal to the frequency of “exploitable” instances in the training set. Due to their nature,
the baseline models ignore any feature representation and data balancing technique employed.
To summarize, we experimented with a total of 567 models, i.e., 72 traditional ML models, five

LLMs, and four baseline classifiers, all trained and tested on seven corpora.

3.4 Model Evaluation Framework
To ensure high realism in our experimentation, each of the 567 models was validated in the context
of a time-aware validation, which emulates a scenario where the prediction models are iteratively re-
trained and validated at different reference dates with different data. Such reference dates represent
the moment in which the models would be put into production. To this end, we had first to sort all
the instances (i.e., the vulnerabilities) previously collected (Section 3.2) by their publication date,
then create the folds to form the validations rounds, and finally determine the target labels (i.e., the
expected values the models should predict) to assign to each instance according to their exploitation
date, if any. Given the time-aware nature of the validation, the assignment of the labels could not
be done for all the instances in a single shot, as it would break its realism, since exploitability data
is not always available. To better clarify this concept, let us suppose we wanted to validate the
models in December 2005: we would not be allowed to look into any piece of information that came
out after this date. For example, if a CVE had been published in 2003 and was first seen exploited
only in 2006, we must treat that instance as “neutral” in December 2005. Therefore, we assigned
the labels to the instances at each round of validation, in line with the recommendation by Jimenez
et al. [54].

We also took into account other noise-introducing factors that could affect the labeling activity,
which we explain in more detail in Section 3.4.1. The way we split the entire collection of vulnera-
bilities into folds to create the rounds for the time-aware validation is explained in Section 3.4.2,
while in Section 3.4.3 we report how we built the training and test sets for each round. Lastly, in
Section 3.4.5, we describe how the models’ performance was assessed. Figure 3 summarizes the
entire framework with which we trained and tested the 567 models.

3.4.1 Data Cleaning Strategy. Each instance in the dataset had to be labeled according to the
presence of an exploit in Exploit Database. The most straightforward strategy would have been
to mark as “exploitable” (true class) those instances having at least one associated exploit and as
“neutral” (false class) all those not having any reported exploit at all. This would have caused
16.02% vulnerabilities to be labeled as “exploitable” and 83.98% as “neutral”. However, such an
approach is improper in the context of a realistic validation as it would produce a large number
of instances with inappropriate labels. Let us consider the case of CVE-2020-14340, published in
June 2021. By the time of this part of the study, i.e., the reference date is November 2021, only five
months had passed since its publication, so it was quite expected that an exploit was not already
present in Exploit Database, as not enough time had passed since its publication to observe
the first public exploit. As a matter of fact, the average time between the disclosure and the first
exploitation of a vulnerability is 194 days, i.e., more than half a year. Marking as “neutral” such a
recently-disclosed vulnerability would be too eager, causing an overabundance of false labels. We
hypothesize that if we concede some more time to make the exploits emerge, we could label the
instances more confidently. In other words, if recently disclosed vulnerabilities have not been seen
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Fig. 3. Overview of the framework employed to train and test the 567 early exploitability prediction models

in a realistic scenario.

exploited yet, we cannot deem them as “exploitable” or “neutral” with sufficient confidence. Thus,
we decided to completely remove those instances from the validation round having the reference
date of November 2021 to avoid introducing data with noisy labels—following an analogous strategy
adopted by Garg et al. [42]. It is worth pointing out that such instances should not be used either
as training data or as test data because, in the first case, they would inflate the number of false
instances, while in the latter case, they would distort the models’ real performance.

We observed that the number of instances that risk being labeled improperly strongly depends
on the amount of time we are willing to “concede” for exploits to emerge. Let us consider the case
of CVE-2020-25649, which had been published six months before CVE-2020-14340 (seen in the
previous example). Similarly to the previous case, half a year was not enough to let its first exploit
manifest—indeed, this is even below the average exploitation time of 194 days. To minimize the risk
of having improperly labeled instances among our train and test data, we selected the 90𝑡ℎ percentile
from the exploitation time distribution—corresponding to 532 days (about one year and a half)—to
be the “tolerance period” we concede to exploits to manifest. Specifically, given the reference date
𝐷𝑖 in a validation round 𝑅𝑖 , we applied our cleaning strategy to all vulnerabilities that have been
published within 532 days from 𝐷𝑖 . All vulnerabilities within this uncertainty window that were
not exploited before 𝐷𝑖 were completely excluded from the round 𝑅𝑖 . All the vulnerabilities that
passed the cleaning step and those outside the uncertainty window were labeled according to the
presence of an exploit in the Exploit Database reported before 𝐷𝑖 .
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3.4.2 Validation Round Creation. To determine the number of folds into which the dataset must be
divided, and so forming the validation rounds, we used the duration of the uncertainty window set
before (Section 3.4.1). Namely, starting from November 2021 (the time of this part of the study) we
repeatedly went “back in time” by 532 days at a time until the date in which the first vulnerability
in the dataset was published (i.e., 1989). In this way, we ended up with 22 folds, each made of
vulnerabilities published in 532 days time span. For instance, the 22𝑛𝑑 split consists of all the CVEs
published between May 19, 2020, and November 2, 2021, while the 21𝑠𝑡 split consists of the CVEs
published between May 18, 2020, and December 4, 2018, and so forth. Such a splitting allowed us to
evaluate the models’ behavior when the uncertainty window is made of wholly different sets of
vulnerabilities. Figure 3 shows an example of what happens within each round of the time-aware
validation. We observe that the 22𝑛𝑑 round, i.e., the last one, corresponds to the case in which we
use the entire dataset of vulnerabilities mined in this work to train and test the models.

3.4.3 Training & Test Set Preparation. At each validation round 𝑅𝑖 , we used all folds from 1 to 𝑖 to
form the dataset of round 𝑅𝑖 . Then, we apply the data cleaning strategy described in Section 3.4.3 for
all the vulnerabilities admitted in round 𝑅𝑖 , and we created the training and test sets using a time-
aware 80/20 splitting, i.e., placing the first 80% instances in the training set and the remaining 20%
in the test set, ensuring that all the training instances were published before all the test instances.
Afterward, we could proceed with the labeling strategy described by Jimenez et al. [54]. Namely, we
marked the training instances as “exploitable” if and only if they were exploited before the training
date, which corresponds to the latest publication date among all the training instances, while we
marked as “exploitable” the test instances if and only if they were exploited before the reference
date of round 𝑅𝑖 .

3.4.4 Model Training & Testing. At each validation round 𝑅𝑖 , all the vulnerabilities in the 𝑖-th
training and test sets were linked with the content of each of the seven corpora (explained at the
beginning of Section 3.3)—hence, forming seven “variants” of the 𝑖-th training and test sets.
The five pre-trained LLMs, and the four baseline classifiers were trained and tested at this

stage without any other processing. On the contrary, the 72 machine learning configurations
required further processing according to the selected feature representation schema and data
balancing algorithm. Consequently, for each variant of the 𝑖-th training set, we fit the four feature
representation techniques selected (Section 3.3), i.e., word counting (BoW), term frequency (TF), term
frequency-inverse document frequency (TF-IDF), and doc2vec (DE). For the first three schemas,
i.e., BoW, TF, and TF-IDF, we built three document-term matrices, where the rows represent each
instance, and the columns represent all the tokens (using the white space as separator) found in
the textual content associated. The values inside each cell are weighted depending on the specific
schema:

i BoW assigns to the 𝑖 𝑗-th cell the number of times the 𝑗-th term appears in the 𝑖-th document;
ii TF assigns to the 𝑖 𝑗-th element the number of times the 𝑗-th term appears in the 𝑖-th document,
divided by the total number of times the 𝑗-th term appears in the corpus;

iii TF-IDF assigns to the 𝑖 𝑗-th element the TF value multiplied by the IDF (inverse document
frequency) of the 𝑗-th term, which is computed as the logarithm of the total number of
documents divided by the documents where the 𝑗-th term appear, hence lowering the weight
for terms appearing in too many documents.

Therefore, each instance was represented as a numeric vector, which we used to represent the
associated vulnerability. We observe that the final number of features varies among the seven
corpora as they have different terms appearing in them; thus, each of the seven variants of the 𝑖-th
training set ended up having different dimensionalities. On the other hand, the fourth schema, i.e.,
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DE, learns a predetermined number of features extracted via the use of a neural network, which
learns how to represent all the documents in an unsupervised manner. We chose the Distributed Bag-
of-Words (PV-DBOW) variant, setting the size of the embeddings to 300, following the configuration
that provided the best results in related work [45] and keeping all the other settings to the default
recommendations for doc2vec. At this point, the two groups of features (tokens and embeddings)
extracted from the 𝑖-th training set were reused as-is to determine the feature space of all the
corresponding seven “variants” of the 𝑖-th test set without anymodification to avoid data leakage [6].
To do this, on the one hand, we added the test instances into the existing document-term matrices
fitted at the training time and weighed the new instances with BoW, TF, and TF-IDF; on the other
hand, we fed the fitted doc2vec model with the test instances to obtain their embedding in the
same space learned at the training time. Lastly, all variants of the 𝑖-th training set obtained so
far were balanced with two algorithms, i.e., SMOTE over-sampling and NearMiss (version 3)
under-sampling.

3.4.5 Performance Assessment. Once we have obtained the predictions of all the 567 models on
the test sets across all the 22 validation rounds, we derived the confusion matrices reporting the
True/False Positive and True/False Negative predictions. From them, we computed the performance
metrics commonly adopted for the binary classification task, i.e., accuracy, precision, recall, and
F-measure [77]. The F-measure represents an aggregation of precision and recall, both crucial for
evaluating binary classifiers [8]. The trade-off between such values is particularly tricky in the
context of exploitability prediction, as practitioners might wish for higher precision to identify the
potentially exploitable vulnerabilities correctly but also for high recall to avoid false negatives—i.e.,
vulnerabilities considered safe but exploitable. However, the F-measure does not consider the
number of true negative instances, i.e., the neutral vulnerabilities correctly classified as “neutral”.
The problem of exploitability prediction is highly imbalanced, so we were interested in evaluating
all four quadrants of the confusion matrix. To this end, we also involved Matthews’s Correlation
Coefficient (MCC) [68], which represents an indicator of the correlation between the predicted
values and the actual labels of the instances, taking into account the class imbalance in the test
set—differently from other traditional metrics.
We computed the selected performance metrics on all the 22 time-aware validation rounds.

Consequently, the models had 22 scores of a given metric, which did not allow for direct comparison.
Hence, we carried out two kinds of analyses. First, we aggregated the results observed in all 22
iterations of the time-aware validation using aweighted average, assigning a weight proportionate
to the size of the training set used in an iteration. In other terms, the 22 scores were not treated
equally, as (i) the initial iterations faced a problem that is less representative of today’s situation,
and (ii) the amount of data the model worked with in the initial iterations was lower. Assigning
equal weights to all the iterations, like the simple average, would have provided unrealistic and
inflated results, rewarding the models that behaved well in most iterations rather than in the most
recent—and, therefore, significant for today’s practitioners—ones. We exploited the aggregated
scores to depict the box plots of each of the seven corpora, to highlight the distribution of the
performance of the models trained and tested using a given corpus. Besides, we leveraged the
Friedman test [40] to discover whether the seven distributions exhibit statistically significant
differences (𝛼 = 0.05). In case a difference is observed, we conducted the Nemenyi post hoc test [73]
to identify the pairs of corpora having noticeable differences—indeed, the null hypothesis states
that the compared groups have the same distribution. Such a test is robust to repeated comparisons
and does not require the tested distributions to be normal. All of this was needed to answer RQ1.
Afterward, we plot how the model performance varied over the 22 iterations, having the validation
rounds on the x axes and the value scored with a given performance metric over the y axes. Such
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plots allowed us to observe the models’ general “trend” from different perspectives. Analyzing the
trends was needed to answer both RQ2.1 and RQ2.2.
The raw results of our analyses are available in the online appendix of this paper [49].

3.5 Implementation Details and Experimental Infrastructure
The entirety of our experimentation was implemented with a collection of Python scripts. The
traditional machine learning algorithms and the baseline models used the implementation pro-
vided by Scikit-Learn,20 while the pre-trained LLMs were downloaded from HuggingFace21
using its Transformers library. In this respect, the exact pre-trained model versions we used are
distilbert-base-uncased, albert-base-v2, xml-roberta-base, codebert-base, and codeberta-
small-v1, all implemented with PyTorch.22 The document-termmatrices and the feature weighting
for BoW, TF, and TF-IDF were done using Scikit-Learn,23 while the doc2vec model was pro-
vided by the Gensim library.24 The data balancing algorithms, i.e., SMOTE and NearMiss, were
implemented with Imbalanced-Learn25 library. All the performance metrics relied on the im-
plementation provided by Scikit-Learn, while the statistical tests leveraged the SciPy26 and
scikit-posthocs27 packages.
We ran the experiments involving the baseline models and machine learning algorithms on a

Linux machine equipped with a quad-core 1.50 GHz processor and 32 GB of memory. The full
data collection procedure took about 11 days, while the dataset cleaning, splitting, and labeling
required about 13 hours. Due to the large size of the dataset and the high number of configurations
to evaluate and rounds to execute, the models’ training and testing phases were considerably time-
and resource-consuming, taking a total of 65 hours to complete. To experiment with LLMs, we
leveraged a GPU-equipped machine via the Vast.ai28 cloud GPU rental service. The GPU was an
NVIDIA RTX 3090 with 24 GB of memory, and the execution of the experiments took about 13 days
to complete.
We warmly encourage replication and verification of our work. Thus, we make all the scripts

available in the online appendix of this paper [49].

4 ANALYSIS AND DISCUSSION OF THE RESULTS
In this section, we present the results obtained in our experiments to answer our research questions
(presented in Section 3.1).

4.1 The Impact of Early Data Source Combinations (RQ1)
Figures 4 and 5 show the distribution of the aggregated F-measure and MCC scored by the 77
models built on the seven corpora involved in the analysis for RQ1. We can immediately observe
interesting differences among the distributions. The models trained using the ⟨BT⟩ corpus had the
worst performance, scoring less than ∼0.15 median weighted F-measure and less than ∼0.10 median
weighted MCC. On the contrary, ⟨CVE⟩ and ⟨SF⟩ obtained better performance (𝑝 = 0.001), reaching
∼0.40 and ∼0.30 median weighted F-measure, while scoring ∼0.25 and ∼0.16 median weighted MCC,

20Scikit-Learn website: https://scikit-learn.org/
21HuggingFace website: https://huggingface.co/
22PyTorch website: https://pytorch.org/
23Textual features extraction with Scikit-Learn: https://scikit-learn.org/stable/modules/feature_extraction.html#text-

feature-extraction
24doc2vec with Gensim: https://radimrehurek.com/gensim/models/doc2vec.html
25Imbalanced-Learn website: https://imbalanced-learn.org/
26SciPy website: https://scipy.org/
27scikit-posthocs documentation: https://scikit-posthocs.readthedocs.io/en/latest/
28Vast.ai website: https://vast.ai/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://scikit-learn.org/
https://huggingface.co/
https://pytorch.org/
https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
https://radimrehurek.com/gensim/models/doc2vec.html
https://imbalanced-learn.org/
https://scipy.org/
https://scikit-posthocs.readthedocs.io/en/latest/
https://vast.ai/


1:22 Iannone et al.

0.0 0.2 0.4 0.6 0.8 1.0

Weighted F-measure

CVE

SF

BT

CVE+SF

CVE+BT

SF+BT

CVE+SF+BT

C
or

p
u

s

Fig. 4. Weighted F-measure scores obtained by the

77 learning configurations on the seven corpora.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Weighted MCC

CVE

SF

BT

CVE+SF

CVE+BT

SF+BT

CVE+SF+BT

C
or

p
u

s
Fig. 5. Weighted MCC scores obtained by the 77

learning configurations on the seven corpora.

respectively. According to the Nemenyi test, the difference between the two corpora is statistically
significant for both metrics (𝑝 < 0.05 for both metrics).
Then, we observe that combining data from multiple corpora led to improvements compared

to individual ones. Specifically, adding the text data from the ⟨CVE⟩ corpus to the ⟨BT⟩ corpora
can lead up to ∼0.20 median improvement in both weighted F-measure and MCC (𝑝 = 0.001 for
both metrics). A smaller median improvement, though still statistically significant according to
the Nemenyi test (𝑝 = 0.001 for both metrics), is observed when adding ⟨CVE⟩ to the ⟨SF⟩ and ⟨SF
+ BT⟩ corpora, namely slightly less than 0.10 in both weighted F-measure and MCC. Conversely,
adding the data from the ⟨SF⟩ or ⟨BT⟩ corpora to the ⟨CVE⟩ corpus does not lead to any noticeable
change, as also confirmed by the Nemenyi test (𝑝 > 0.05 for both metrics). Interestingly, although
with minimal (less than ∼0.01) and no significant differences (𝑝 > 0.05 for both metrics), the models
trained on the ⟨CVE + SF⟩ corpus experienced a small drop in the median performance for both
weighted F-measure and MCC when ⟨BT⟩ is added. In the end, ⟨CVE + SF⟩ and ⟨CVE + SF + BT⟩
have been found to be the best corpora on which the models should train, reaching up to 0.48
weighted F-measure (0.40 on a median) and 0.35 weighted MCC (0.26 on a median). Yet, we cannot
confidently determine which of the two is the best option since the models obtained comparable
performance with negligible and non-statically significant differences.
The weighted precision and recall (Figures 6 and 7) help better comprehend the F-measure

scores observed. The precision distributions are mainly centered around 0.43, though their variance
appears higher when the data from the ⟨CVE⟩ corpus is not involved. In other terms, the central
tendency seems only slightly affected by the textual content used to describe the instances, but
the same does not happen for the variance—i.e., without data from the ⟨CVE⟩ corpus, the models
behave largely differently in terms of precision. The best results were obtained by the models
trained on the ⟨CVE + SF⟩ corpus, reaching 0.46 on a median. The situation is somehow different
when looking at the weighted recall (Figures 6 and 7). The distributions are noticeably different,
with much wider variances; this means that the recall metric is highly subject to the specific model
rather than the kind of textual data used. The most “contradicting” results were seen when the
text from ⟨BT⟩ corpus is involved, where the median weighted recall is noticeably lower than the
mean, and the boxes are wider. Such a scenario indicates the presence of many models having
very low recall, i.e., models tending to avoid predicting true (i.e., “exploitable”), and models that
predominantly predicted true that can easily raise their recall. The models that did not use the
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⟨CVE⟩ corpus scored less than 0.25 weighted recall on a median. Once adding ⟨CVE⟩, the central
tendency between the corpora becomes more equalized (𝑝 > 0.05).

All these results indicate that the sole CVE description is sufficient for determining the majority
of the performance [4, 45]. The text from SecurityFocus can provide additional information that
further boosts the performance without changing the general trend. Despite not giving useful
information on its own, the text from BugTraq does not hinder the predictions when mixed with
text from other sources.

¬ Answer to RQ1. The text from the experimented data sources significantly impacts the
model performance, affecting up to 25% and 15% of the median weighted F-measure and MCC
metrics, respectively. The central tendency of the models’ precision is essentially unaffected by
the specific corpus selected, but not the variance, which is wider when the text from ⟨CVE⟩
corpus is not involved. Wide distributions are also observed for the recall, irrespective of the
corpus. Involving textual data from CVE always leads to improvements in all perspectives, which
is further improved if the data from SecurityFocus are added as well. The text from BugTraq
alone does not inform the models adequately but can be added as an extra source along with CVE
and SecurityFocus without harm. In the end, the best corpora for training the models are ⟨CVE
+ SF⟩ and ⟨CVE + SF + BT⟩, showing no relevant differences between the two.

4.2 The Performance of Different Learning Configurations (RQ2)
Once we determined the best corpora to train the prediction models, we investigated the perfor-
mance scored by the experimented learning configurations to answer RQ2. We subdivided it into
RQ2.1 and RQ2.2 to have focused analyses on the models built with the traditional learning pipeline
and those leveraging end-to-end pre-trained LLMs. For this analysis, we chose to focus on the
models trained and tested on the ⟨CVE + SF⟩ corpus as its content determined the best models
overall. The raw results for the other corpora can be found in our online appendix [49].

To answer RQ2.1, we analyze the ML models built with the traditional pipeline, which is made of
three key parts: (1) feature representation, (2) training data balancing, and (3) learning algorithm.
Figure 8 provides a broad overview of the F-measure scores obtained by the six learning algorithms
on the 12 training settings made by the combination of the four feature representation schemas
and the three data balancing algorithms. We observe that all models under every training setting
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Fig. 8. F-measure scores obtained in the 22 time-aware validation rounds by the 72 traditional ML models

on the ⟨CVE + SF⟩ corpus. Each subplot shows the six learning algorithms, each with a unique color. The

subplots in the rows share the same feature representation schema, while the subplots in the columns share

the same balancing algorithm for training data.

followed one great pattern: the F-measure steadily increases—net of sporadic drops—from the 1𝑠𝑡
round to the 12𝑡ℎ , i.e., the point where almost all models achieve the best score of 0.97. Yet, all
models start dropping their performance from that round on, reaching their lowest peak of less than
0.16—excluding the very initial rounds. This phenomenon shows that the most recent “versions” of
such models are not able to recognize exploitable vulnerabilities properly, despite seeing dozens of
thousands of examples during training. It seems the learning becomes less and less fruitful as the
round goes by, likely due to the difficulty of recognizing a clear distinction between exploitable
vulnerabilities and those not exploited yet, among many examples. In other words, the text data
were enough to recognize the exploitability of “historical” vulnerabilities but are less helpful for
modern-day vulnerabilities. It is worth pointing out that there could be other reasons behind such a
drop. For instance, we observe that the disclosure of public exploits has become less frequent than
it used to be in the past, from over 15,000 in the period 2001-2010 to less than 7,500 in the period
2011-2020. This difference becomes even more relevant when looking at the number of disclosed
vulnerabilities: around 42,000 in 2001-2010 and around 100,000 in 2011-2020. Thus, the number of
disclosed vulnerabilities doubled in a decade while the published exploits halved. This inevitably
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Fig. 9. MCC scores obtained in the 22 time-aware validation rounds by the 72 traditional ML models on the

⟨CVE + SF⟩ corpus. Each subplot shows the six learning algorithms, each with a unique color. The subplots in

the rows share the same feature representation schema, while the subplots in the columns share the same

data balancing algorithm for training data.

affected the distribution of true and false instances, ending up with highly imbalanced test sets
in the latest validation rounds.

Due to the limited reliability of F-measure formeasuring themodel performancewhen the number
of true instances is noticeably lower than the number of false instances [99], we also looked at
the MCC metric (depicted in Figure 9) to observe whether a similar pattern occurred. Interestingly,
the models achieve an MCC score around zero in the 12𝑡ℎ round, indicating the absence of any
correlations between the model predictions and the target variable (i.e., the exploitability). A lack
of correlation means that the models make utterly unrelated predictions with the target variable,
implying that the model performs no better than a fully random or constant classifier [9, 99]. The
diverging results of MCC and F-measure scored at the 12𝑡ℎ round suggests that many models in
that round behaved almost like a constant classifier always predicting true; this behavior benefited
the F-measure since over 95% test instances had true label in the 12𝑡ℎ round but not the MCC
metric, which does not reward models making one-way predictions.
The best MCC scores were obtained around the 15𝑡ℎ round, going beyond 0.60 MCC in the

best-case scenario, i.e., when SMOTE balancing is employed. Such a score indicates the presence of
a strong positive correlation, which suggests the model performs well. This is further confirmed
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by the good F-measure scores, reaching 0.80 when SMOTE is used. Thus, the 15𝑡ℎ round provides
a definitely better trade-off than the 12𝑡ℎ . All the models in the 15𝑡ℎ round were trained on all
vulnerabilities disclosed until December 2008 and tested on those disclosed until August 2011. We
observe that the amount of true and false test instances is more balanced (around 50% for both),
indicating that the exploitability prediction task was easier than it is today—indeed, in the last
round the number of true instances in the test set is just the 5%. Unfortunately, after this round,
all the models meet a similar demise seen for the F-measure: they slowly converge to no more than
0.12 MCC in the last round.

Looking deeper at the effect of feature representation schema on the F-measure trends (Figure 8),
we observe that the models based on the document-term matrix (i.e., BoW, TF, and TF-IDF) share
the same general trends once a data balancing technique is applied. In particular, we observe that
the effect of a balancer looks the same in all three schemas, favoring and hindering the same
classifiers. For instance, the KNN classifiers draw many benefits from an oversampled training
set (i.e., SMOTE). Moreover, all the classifiers follow closely similar trends when SMOTE is used.
On the contrary, the models have highly diversified trends with document embeddings (i.e., DE),
standing out from the other three feature representation schemas. The KNN classifier still can be
seen benefiting from the use of SMOTE, though with inferior performance than in other schemas.
The MCC trends (Figure 9) exhibit a similar effect though with less diversification, i.e., the effect of
the feature representation schema and the data balancing is smoother, particularly with TF and
TF-IDF. Interestingly, the training sets undersampled with NearMiss determined models with
negative MCC scores (reaching less than -0.3 in several cases), indicating the presence of moderate
negative correlations between the model predictions and the target variable; yet, this happened
only in the initial validation rounds, which does not imply any negative impact of this balancer.

We used the weighted metrics to determine the models that achieved the best results across all
rounds. We found that the best model overall was a Logistic Regression classifier (LR) using TF
feature schema and with a training set oversampled by SMOTE, scoring 0.49 weighted F-measure
and 0.36 weighted MCC and touching 0.82 F-measure and 0.65 MCC in the 15𝑡ℎ round. In particular,
we observed that most learning algorithms had their best F-measure and MCC scores with TF
and SMOTE. The story is slightly different by looking at the precision and recall. We found that
the learning algorithm with the highest weighted recall was KNN, reaching 0.80 with BoW and
SMOTE—0.08 higher than the score obtained with TF and SMOTE. Symmetrically, the Random
Forest (RF) achieved the highest weighted precision score, reaching 0.65 with TF-IDF without data
balancing—only 0.04 higher than the score obtained with TF and SMOTE. In the end, we observed
a generally positive trend with TF and SMOTE, though maximizing a specific metric might require
a specific learning configuration.

Lastly, we looked at the performance scored by the four baseline models, i.e., the random (RND),
the pessimistic (PES), the optimistic (OPT), and the stratified (STR) classifiers. Among the four, the
best baseline classifier was PES, achieving 0.37 weighted F-measure and 0.26 weighted precision.
We remark that the MCC is always zero as the true and false negatives are always zero, while the
recall is always maximum (i.e., one) for the same reason. Such results show that the experimented
prediction models do make meaningful predictions as the best model, i.e., the Logistic Regression
(with TF and SMOTE), outperforms PES by 0.12 and 0.34 in weighted F-measure and precision,
respectively. Nevertheless, PES outperforms all models in the 12𝑡ℎ round for F-measure. Indeed, due
to the large presence of true instances in the test set, the PES model has a very low probability of
making false positive predictions, obtaining high precision in return and boosting the F-measure—
thanks to the recall score fixed to one. In any case, its performance drops in all the rounds, where
the test instances have less imbalanced distributions.
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¬ Answer to RQ2.1. All traditional ML models had their F-measure increase until the 12𝑡ℎ
validation round, touching the peak of 0.97, until dropping to 0.16 in the latest round. The MCC
scores followed a similar trend, despite the growth arriving at the 15𝑡ℎ round, reaching ∼0.60.
The 15𝑡ℎ round determined the best trade-off among the two metrics. Oversampling with SMOTE
generally gives benefits to the models, particularly if applied in conjunction with TF; in this
setting, the Logistic Regression classifier achieved the highest weighted F-measure and MCC
scores, i.e., 0.49 and 0.36, respectively, outperforming the pessimistic baseline model under all
fronts. KNN achieved the highest weighted recall of 0.80 with BoW and SMOTE, while Random
Forest reached 0.65 weighted precision with TF-IDF without any data balancing.

To answer RQ2.2, we analyze the models made with the pre-trained LLMs. We found that, with
the exception of a few sporadic rounds, all models tend to act like perfect optimistic classifiers, i.e.,
always predicting “neutral” (having false label). Therefore, the F-measure (Figure 10) turned out
to be extremely low (the weighted aggregated score did not go beyond 0.01 with CodeBERTa) as
a consequence of the recall being always zero—due to the absence of any true prediction). Such
behavior had an extremely positive impact on the accuracy (Figure 11), on which all the models
achieved very high performance as the rounds went on; this happened because of the scarce number
of true instances in the test sets of the later rounds.
The round that had the most interesting performance in the ⟨CVE + SF⟩ corpus is the 12𝑡ℎ , the

same where the traditional ML models achieved the highest F-measure scores. In such a round, the
CodeBERTa model reached 0.51 F-measure thanks to the quasi-perfect precision, i.e., 0.98, which
happened because of the large number of true instances in the 12𝑡ℎ test set that minimized the
chances of making false positive predictions. Nevertheless, given the peculiarity of the 12𝑡ℎ test
set, it is not clear whether in this round CodeBERTa successfully learned something or it was just
making random predictions (with 33% true predictions and 67% false ones). Such an interesting
behavior did not only happen for the ⟨CVE + SF⟩ corpus but for all the other corpora, though with
different “fortunate” rounds.

Ultimately, we can conclude that the pre-trained LLMs could not learn anything from the training
phases—except for the few “fortunate” rounds—despite the large amount of data available. The
only models that apparently learned something were CodeBERTa and CodeBERT, both having
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Fig. 12. Visualization of the 15
𝑡ℎ

training and test

instances of the ⟨CVE + SF⟩ corpus represented
with TF in a 2-dimensional space with LSA.

Fig. 13. Visualization of the 22
𝑛𝑑

training and test

instances of the ⟨CVE + SF⟩ corpus represented
with TF in a 2-dimensional space with LSA.

experienced source code text during their pre-training stage; yet, they both tend to behave like the
other models in later rounds. We believe the reasons could be imputed to the lack of a massive pre-
training on text containing the typical vocabulary of the security domain, but also to an inadequate
data preprocessing for the experimented models.

¬Answer to RQ2.2. The pre-trained LLMs used as-is are inadequate for assessing the exploitabil-
ity leveraging early data, behaving like constant classifiers always predicting false. There are
few exceptions in certain rounds of the time-aware validation, but whether the predictions were
made randomly is unclear.

4.3 Further Analysis
The time-aware validation setting allowed us to observe how the models behave at different points
in time where the training and test sets had diversified compositions. We wanted to shed light on
the composition of both training and test sets to comprehend the possible reasons for the model to
make such predictions further. Thus, we employed a dimensionality reduction technique based on
the Singular Value Decomposition (SVD) [33], which projects the data into a lower dimensional
space using matrix factorization. Such a technique is better known as Latent Semantic Analysis (LSA,
a.k.a. Latent Semantic Indexing, LSI) [27, 31] when adapted for highly sparse data, like the textual
represented with BoW, TF, and TF-IDF. Essentially, this technique forms a lower-dimensional
“semantic space” of a given size—typically vastly lower the number of terms—where the instances
sharing similar concepts are mapped to the same cluster, also dealing with cases of synonymy and
polysemy of terms.
In our case, we chose to build a semantic space of two dimensions to allow plotting into a 2D

space and inspect how the training and test instances are distributed. Specifically, we focused on
the training and test sets employed in the most interesting rounds that emerged from the model
performance analysis. Therefore, we inspected the 15𝑡ℎ and the 22𝑛𝑑 rounds due to their contrasting
performance; the former achieved the best trade-off between F-measure and MCC, and the latter
had the worst performance overall. In continuity with the previous analyses, we focused on the
⟨CVE + SF⟩ corpus and opted for visualizing the document-term matrices made with TF schema as
it was the schema that had the best results overall.
Figures 12 and 13 show the scatter plots of the training and test instances drawn from the 15𝑡ℎ

and the 22𝑛𝑑 rounds, respectively. Both plots depict the large number of instances involved in
training and testing. We immediately observe in all cases, the “exploitable” (true) and “neutral”
(false) instances are somehow “intermixed”. This could explain why many models had trouble
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understanding the difference between the two classes of instances and so opted to behave like
constant classifiers in several cases. Nevertheless, we cannot exclude the visualization algorithm
that failed to faithfully preserve the differences among the instances, though it is recommended to
visualize data with textual features. Such an aspect is worth further investigation. Looking deeper
at the training and test sets of the 15𝑡ℎ round, we observe the two share a similar arrangement.
This might indicate that the models, once trained, did not find a different problem once going to
the test phase, which might be the main motivation for the good performance obtained in that
round. On the contrary, the “neutral” (false) training and test instances of the 22𝑛𝑑 round share
the same arrangement but the “exploitable” (true) instances do not. Indeed, the arrangement in the
test phase seems like a subset of the arrangement seen at the training time. Likely, this could be
one of the reasons why the models increased their false positive rate (i.e., false instances deemed
as true) due to this reduced presence of true instances at the testing time.

¬ Further Analysis Summary. There is a noticeable discrepancy between the arrangement of
training and test instances in the 22𝑛𝑑 round, where all models’ performance dropped to their
minimum. Such a discrepancy is not observed in a good round like the 15𝑡ℎ . Visualizing the
composition of training and test instances during the validation rounds seems an interesting
diagnostic tool to find the possible causes behind misclassification.

5 DISCUSSION AND IMPLICATIONS
The results achieved in our study shed light on several aspects that may lead to several implications
for the research community and the practitioners, as discussed in the following.
Searching for a Reliable Ground Truth. The results reported in Section 4 revealed the noticeable
performance drop that affected all the models—including the baselines such as the pessimistic
classifier—as the validation rounds proceeded. In this respect, we made two key observations: (1)
the F-measure score is directly proportionate to the number of true instances (i.e., “exploitable” )
appearing in the test set, independently from the composition of the training set; (2) the MCC scores
revealed the existence of several rounds with positive correlations between the model predictions
and the target variable. Similar findings were only encountered in similar research work applying
a time-aware validation framework [2, 17]. Yet, such works only brought attention to the aggregate
score performed in all rounds, while we opted for a hybrid strategy, presenting both the aggregated
(weighted) scores and focused attention to those rounds exhibiting particular behaviors. We
suspect that one of the main reasons behind such results lies in the strategy adopted to build the
ground truth. In this work, we relied on the Exploit Database because of its good reputation
and popularity among researchers in exploitability prediction [2, 34, 50, 85]. Nevertheless, we
observed a noticeable reduction in the publication rate of exploited vulnerabilities—i.e., half as many
exploits released in the period 2011-2020 than in the previous decade, with the rate of disclosed
vulnerabilities doubled. Indeed, it seems that it has been struggling to keep up the pace of newly
disclosed vulnerabilities in recent years. This could imply that either exploits are disclosed with
less frequency than before or the rate of new vulnerabilities is too high to keep up the pace; this
phenomenon makes the Exploit Database progressively less reliable for building a solid ground
truth in both cases. In this respect, our study constitutes a baseline for future re-evaluations with
alternative data sources to build better ground truths [2, 34]. Indeed, many other sources point to
instances of exploits (or tentative exploits) observed in the wild. For example, Symantec Attack
Signatures collect traces of attackers’ attempts via intrusion detection systems.29 In the context

29Symantec Attack Signatures: https://www.broadcom.com/support/security-center/attacksignatures?

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://www.broadcom.com/support/security-center/attacksignatures?


1:30 Iannone et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Round

0

20

40

60

80

100

Pe
rc

en
ta

ge

5 22 40 71 11
7

31
1

81
3

19
77

36
38

62
62

97
68

17
35

9
27

28
9

35
91

5
41

83
3

48
18

9
55

25
3

63
67

9
74

47
1

88
29

2
11

10
13

13
60

38

Verification and Validation
Time and State
Resource Protection
Program Error
Other
Misconfiguration
Information Exposure
Encryption
Buffer Overflow
Authentication and Authorization

Fig. 14. Distribution of the vulnerability in our dataset over the 22 splits into ten custom categories reflecting

their weakness type.

of Project Zero, Google gathers 0-day exploits observed in the wild, enriched with a detailed root
cause analysis.30 The US Cybersecurity & Infrastructure Security Agency (CISA) curates the Known
Exploited Vulnerabilities (KEV) catalog, containing hundreds reports of exploited vulnerabilities.31
Due to their newness, the size of such datasets is still limited (e.g., Google Project Zero has only
69 entries as of February 2024), though their increasing popularity should address this problem
eventually, making them suitable for large-scale analyses like ours. We envision a triangulation
of multiple strategies to improve the reliability and quality of the labeling process. To this end,
there is a need for novel and automated monitoring solutions that automatically discover “silent”
exploits on the web and map them to the related vulnerabilities; thus, the exploitability prediction
models could rely on a wider and continuously growing knowledge base about real-world exploits.
Classifying Vulnerabilities for Fine-grained Inspections. Our large-scale analysis involved
all disclosed vulnerabilities in NVD until November 03, 2021. In our work, we did not make any
difference between vulnerabilities, e.g., analyzing web-based and memory-related vulnerabilities
separately, but treating all of them as equal. Many factors concerning vulnerabilities inevitably
influence any prediction activity, especially the exploitability prediction. In particular, how the
distribution of vulnerability types varies over type could be one of such factors that might influence
the prediction performance observed. To reach this goal, we have given each vulnerability a category
guided by its assigned CWE. Namely, we re-mapped the given CWE according to the “Simplified
Mapping” view provided by CWE itself.32 Such a step was meant to greatly reduce the many
weakness types into a more reasonable set of categories, allowing us to decrease it from 180 to 89.
Being this number still great, we opted to further assign new categories based on our knowledge of
the 89 CWE types resulting from the first re-mapping, ending up with ten broader categories like
“Authentication and Authorization” and “Resource Protection”. Figure 14 shows the distribution trend

30Google Project Zero’s 0-days In-the-Wild: https://googleprojectzero.github.io/0days-in-the-wild/
31CISA KEV Catalog: https://www.cisa.gov/known-exploited-vulnerabilities-catalog
32CWE-1003: https://cwe.mitre.org/data/definitions/1003.html
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into such categories over time (over the 22 splits of the dataset). We can immediately observe that as
the year passes, the precise type of vulnerability assigned becomes clearer. Indeed, during the initial
periods of the CVE system, most vulnerabilities had their CWE not specified (“NVD-CWE-noinfo”
or “NVD-CWE-Other”), resulting in many CVEs falling into the “Other” category, particularly
during the first 12 rounds. Such lack of information does not allow us to easily understand whether
the vulnerability types could have played a role in the performance drop we observed at the later
rounds. The results of this work should be remade into a subset of vulnerabilities for triangulating
the issue that affected the model performance.

Engineering the Learning Configuration. As observed in the context of RQ2, the four feature
representation techniques had a relevant impact on the overall models’ performance. In this study,
we relied on widespread settings to set up the text pre-processing pipeline and to configure the
doc2vec model without carrying out a profound empirical investigation. Indeed, our goal was
to assess the key differences among the main techniques employed when working with textual
data. Hence, our work does not declare the best feature representation technique on all fronts
but rather encourages the evaluation of alternative learning configurations and techniques. The
Latent Semantic Analysis (LSA) [27, 31] used to reduce the dimensionality of the document-term
matrices (Section 4.3) is a candidate technique that can be employed to represent the textual features
the traditional ML models can use, acting somehow similarly to the embedding strategies like
doc2vec. As regards the time-aware validation setting, we followed Liu et al.’s [63] approach by
considering a deployment setting in which the knowledge base grows over time. In a different way,
the work by Bullough et al. [17] employed a “sliding window” to train only on a limited set of past
data, i.e., only those that are temporally closer to the testing data. The rationale of their choice is
that recent data might represent the reality better than older data, as some characteristics might
have changed over time—i.e., a concept drift has occurred [97]. For instance, the style and content
of discussions in BugTraq written in 2010 might differ from those of 2000, negatively affecting
the models when learning the relations between the textual features and the target variable. The
traditional sliding window approach completely ignores older instances during the training based
on a pre-determined or moving threshold (i.e., the “window size”). Alternatively, we could also
assign a lower weight to older instances, using a “decaying window”, so that the learners would
give less importance to the old instances that likely induced the models into error. In addition, by
employing a mechanism to assess the quality of the online discussions, e.g., their readability [89] or
the amount of their informative content [22], we could assign higher weights to “good” instances
and instruct the models to give more attention to them during the training, hopefully improving
their overall capabilities.

On the Practical Usages of Early and Realistic EPMs. Adopting an early exploitability predic-
tion model provides many advantages in assessing the severity of newly discovered vulnerabilities.
Let us consider a scenario where a software project adopts one. When a new vulnerability is
discovered, either by internals or externals, the developers report the issue to MITRE and request
the allocation of a CVE record, where they explain the issue found. Once third-party experts
verify the issue, the vulnerability is officially disclosed in a CVE record containing the first official
description in natural language. Such a description can be directly fed into the early exploitability
prediction model to readily generate an initial assessment of that vulnerability. Besides, if other free
commentaries are already available—e.g., via GitHub issues—the prediction model can integrate
those pieces of information to boost the prediction accuracy further, as we also observed during the
analyses for RQ1. Should the model flag the vulnerability as potentially exploitable, the developers
can take specific countermeasures [56, 86] to (i) address the vulnerability earlier than other issues,
(ii) release the software version containing the patch quickly, and (iii) adopt a better communication
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strategy to recommend the users to install the update as soon as possible. It is worth remarking that
any countermeasure adopted in this sense is meant to hasten the vulnerability remediation process,
not to replace other forms of security assessment like “late” exploitability prediction models or the
CVSS analysis. In this respect, early assessment can also be used to support the security analysts in
charge of making the CVSS measurement, who can rely on an additional “opinion” when it comes to
judging the vulnerabilities’ nature. In particular, bringing forward the assessment of just-disclosed
vulnerabilities facilitates the prioritization of all the security issues found until that moment. Indeed,
developers can better understand which issue requires more attention than others and allocate
adequate resources accordingly in the hope of reducing the duration of the exposure window and,
therefore, the risk of being attacked, as explored by Jacobs et al. with EPSS [52]. Afterward, as soon
as new information on the vulnerabilities becomes gradually available, e.g., a Proof-of-Concept is
disclosed, developers can progressively leverage more reliable solutions to adjust the prioritization
of their interventions, such as Evocatio fuzzer [53]. In such a mechanism, we envision that models
based on early data can represent the first step of a prioritization pipeline which takes advantage
of all the strengths of existing solutions as soon as the information they use becomes available.
Despite the performance observed at the latest validation rounds not supporting the practical
usefulness of such early models, we believe this work acts as a cornerstone for determining the
feasibility of early vulnerability assessment, willing to channel more attention to this topic and
express its potential to the utmost.

Early Predictions and Beyond. Our empirical investigation did not aim to provide a cutting-edge
exploitability prediction model but rather to evaluate its performance with early data and in a
realistic scenario. We acknowledge the existence of models that achieved better results in the
literature [14, 45, 85]; yet, many of them did not consider the precautions indicated by [17] or those
we adopted in this work. In this respect, we believe that replicating previous work under a realistic
validation setting is necessary to estimate the models’ real effectiveness. Moreover, we envision
a combination of all existing models, both early and late, to develop an incremental exploitability
prediction system, i.e., an integrated framework that provides the best possible predictions according
to the information available at a given time. For instance, after discovering a new vulnerability
(day zero), the incremental system would just rely on the short description and the initial online
discussions—as we have presented in this paper; on the day the experts make in-depth analyses,
the system will consider all the features obtainable from the CVSS vector to further improve its
predictive power—acting as “late” models. Such a solution may express its full usefulness in the case
of borderline classifications, i.e., when the early predictions fall too close to the decision threshold,
making the model unsure about the appropriate class to assign. In such scenarios, the system might
recommend waiting for additional data, such as the CVSS exploitability metrics, before providing
a more trustworthy response. Furthermore, this framework could be integrated with an impact
prediction module that estimates the harms that the potential exploitability of that vulnerability
could cause to the confidentiality, integrity, and availability of the targeted asset. This additional
piece will cover the second part covered by CVSS base metrics, i.e., the “Impact metrics,” fulfilling
the role of assisting the human experts in providing a broad understanding of the risks connected
to keeping a vulnerability unfixed.

6 THREATS TO VALIDITY

Threats to Construct Validity. We mined the full content of the National Vulnerability Database
(NVD) combined with CVE List to collect all the known vulnerabilities disclosed before November
03, 2021, being careful to avoid the inclusion of malformed and rejected CVEs. We did not perform
an extensive manual validation of the retrieved dataset to detect possible curation errors, such as
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a CVE incorrectly pointing to an external reference related to a different vulnerability. However,
we are confident that the considered data sources are reliable since both databases are known to
maintain high-quality data. Besides, we deliberately focused only on the URLs labeled as BID or
BugTraq for three reasons: (1) URLs of these kind point to well-known sources where developers
used to discuss vulnerabilities way before their official disclosure; (2) the pointed websites were
easy to mine—a common HTML parser sufficed—to gather the required data; (3) developing a
generic script able to mine all the thousands of different websites reachable from the CVEs would
have been impractical. We handled the shutdown of both Security Focus and BugTraq using the
Wayback Machine service and the SecLists archive to recover the missing links with the CVE
records. Nevertheless, we cannot guarantee the freedom from missing or incorrect links caused by
Wayback Machine or the imprecision of the pattern matching heuristic employed to reach the
right page on SecLists. In any case, the approach of early prediction models is not strictly bound
to BID and BugTraq references, and it can be adapted to any other source of online discussions
with just minor tweaks.

The text of the online discussions contained many irrelevant data, such as e-mail addresses, PGP
signatures, and hex numbers. We applied regular expressions to capture these patterns and remove
them to improve the quality of the document corpus. In addition, we adopted the recommended
pre-processing steps when working with natural language text to allow the feature representation
techniques to learn a compact and representative vocabulary. We are aware that our text cleaning
procedure may not have been complete and could have left other forms of noise, such as partial
code snippets; yet, to the best of our knowledge, there are no tools able to capture partial code
elements for any programming language; hence we opted not to implement an ad-hoc solution as
it would have required dedicated effort and extensive validation.
When assigning the labels to the instances in our dataset, we carefully avoided labeling all

instances outside the context of the time-aware validation. To this end, we followed the strategy
proposed by Jimenez et al. [54], assigning more realistic labels to the instances at each round.
Specifically, we labeled as “exploitable” (true class) the instances in the training set that were
exploited before the training date—i.e., the latest publication date in the training set—and we marked
as “exploitable” the test instances only if they were exploited before the date of the last vulnerability
published in that round.

Threats to Internal Validity. The investigation for RQ1 analyzed the impact caused by the seven
corpora created from the three data sources considered, i.e., CVE, Security Focus and BugTraq,
and their combination. The combination consisted of applying a string concatenation to create
the four combined corpora before creating the document-term matrices or fitting the word2vec
model—this determined different feature spaces for each corpus. Not only did the analysis help
understand the impact of each corpus, but it also showed that text-driven early prediction models
can be employed with any source available, though with noticeably different performance. In other
words, it is not mandatory that a vulnerability is disclosed via CVE before running the predictions,
but the entire procedure can be done with any kind of text explaining the issue.
As indicated by Bullough et al. [17], several exploitability prediction models in literature had

some issues in their machine learning setup. First, we adopted a time-aware validation setting to
simulate a realistic production scenario in which the prediction model is periodically re-trained and
deployed. We deliberately avoided a fully-random cross-validation as our data had time relations
among them; indeed, training on “future” data to predict data belonging to the “past” would have
generated inflated and misleading results. Moreover, we were careful to avoid applying the feature
encoding and data balancing (where applied) on the test data, but only on the training set made up
at each iteration of the time-aware validation. Indeed, such bad practices would produce overly
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optimistic results, as the models would learn information from data that should be left completely
unseen before the testing phase because they represent instances to predict in a real deployment
scenario [6].
To perform the time-aware validation, we split the dataset into several folds, each made of the

vulnerabilities disclosed in (about) one year and a half time span—precisely, 532 days. We started the
splitting from the last published CVE in 2021 and “jumped” back in time to form the 22 folds. The
size of such a time span was determined by the 90𝑡ℎ percentile of the exploitation time distribution,
i.e., the duration of the uncertainty window. We made this choice to observe how the models behave
when the uncertainty window is made of totally different sets of vulnerabilities. We acknowledge
that there exist different ways to create the folds, such as by equally splitting the dataset by the
number of CVEs. The results we obtained are still subject to the choice we made to set the size
of the uncertainty window. We chose the 90𝑡ℎ percentile of the exploitation time distribution
as it represents a largely sufficient time to let exploits emerge. As a matter of fact, the average
exploitation time, i.e., 194 days, appeared quite limited and too eager. We are aware of different,
and perhaps more appropriate, widths of the uncertainty window that could determine more valid
results, and that would be worth exploring with dedicated further analyses.

When generating the document embeddings from the training corpora with doc2vec, we used the
configuration that provided the best results in previous work [45] and others settings recommended
for doc2vec models, e.g., setting to 300 the size of the embedding or using the Distributed Bag-
of-Words variant. The results achieved by this feature representation technique might change if
different configurations are employed.

Threats to External Validity.We used the Exploit Database as the main source to build our
ground truth (i.e., to label the CVEs with true and false) because of its reliability and completeness.
Nevertheless, it only stores Proof of Concepts (PoC) and exploits publicly released by their authors
without tracing any exploit observed in the wild (e.g., via attack signature detection) as done
by Symantec Attack Signatures or Google Project Zero’s 0-days-In-The-Wild (described in
Section 5). Therefore, our models can only predict whether an exploitation will be released without
generalizing to other forms of exploitation. Moreover, the observed results hinted at possible flaws
in our ground truth that caused the model performance degradation. Thus, integrating multiple
data sources could improve the quality of the ground truth and, hopefully, the performance as well.

The exploitability prediction models experimented in this work target disclosed vulnerabilities.
This choice was driven by the fact that the metadata for such vulnerabilities is available for initial
assessments. Hence, the models cannot estimate the exploitability of 0-day vulnerabilities since
they are supposed to be unknown to the developers or any other party involved in taking care of
the system’s security. Predicting the risk of undergoing 0-day exploits inevitably might require
monitoring the accesses to the application or any other suspicious actions, relying on principles
different from those recalled in this work [44]. Nevertheless, the prediction of exploits to known and
disclosed vulnerabilities can also be used as a proxy indicator for estimating the exploitation of other
unknown vulnerabilities in the system sharing commonalities with those already disclosed [13].
Furthermore, the experimented models are meant to predict the event of future exploitation for
individual vulnerabilities, in line with all the related work presented in Section 2. Hence, the models
cannot predict attacks concerning multiple vulnerabilities or chains of exploits. Achieving such a
goal is indeed feasible, though it might require more mature models to make accurate predictions
for individual vulnerabilities.

Threats to Conclusion Validity. From all the 504 models, we computed multiple metrics capturing
the classifiers’ performance from different points of view, reducing the risk of drawing erroneous
conclusions. In particular, we deliberately did not consider the accuracy—except for observing the
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scarce performance of LLMs—as it produces largely inflated results leading to optimistic conclusions
in imbalanced problems. In this paper, we largely relied on the F-measure and MCC metrics to
observe how the model performed. The rest of the raw results are in the online appendix [49].

We aggregated the results of the 22 validation round with the weighted average to have a single
number representing the overall performance and facilitate the comparison. We preferred this
aggregator to other popular choices, such as the simple average or the median, because the 22
validation rounds are not equivalent representations of the same problem. Indeed, in the 15𝑡ℎ and
22𝑡ℎ rounds, all models achieved utterly different performance; nevertheless, the exploitability
prediction problems of those two rounds cannot be directly compared as they are separated by the
events that occurred in ten years. Therefore, we assigned more weights to the rounds having wider
training sets. We also looked at the aggregated scores obtained using the simple average and the
median. For instance, the model that had the largest weighted F-measure under ⟨CVE + SF⟩ corpus
(i.e., Logistic Regression with TF-IDF and oversampled training data) would score 0.54 with the
simple average and 0.64 with the median, noticeably higher than 0.49 weighted score. We believe
such inflated values do not accurately describe the overall model performance, motivating the use
of a weighted aggregator. Still, we opted to closely inspect the model trends over the 22 validation
rounds to avoid concluding using only a single aggregated value.

The Latent Semantic Analysis (LSA) employed in Section 4.3 allowed us to inspect the arrange-
ment of the training and test instances at key validation rounds. We opted for this technique due
to its suitability for textual data based on document-term matrices, which are known to generate
a sparse feature space [31]. We were careful to fit the semantic space only on the training data
to prevent it from being influenced by future data that was supposed to be unseen at that time.
In other words, the test data were projected in the same semantic space previously fitted on the
corresponding training set.

7 CONCLUSION
This paper presented a large-scale empirical evaluation of the effectiveness of early exploitability
prediction models relying on the data available in a just-disclosed vulnerability, comparing 72
learning configurations, involving six traditional ML classifiers, four feature representation schemas,
and three data balancing settings, as well as five pre-trained LLMs. All models were evaluated in
the context of a time-aware validation setting representing a realistic scenario where the models
are periodically re-trained and deployed. Additionally, we handled possible issues connected to an
unrealistic and eager assignment of labels by employing a special data cleaning strategy.
The results showed that CVE descriptions alone suffice, but the addition of online discussions

from Security Focus further boosts the performance of any model. The best combination of feature
representation and data balancing was with TF and SMOTE in the majority of the cases. The best
classifier depends on the performance metric: the Logistic Regression achieved the best F-measure
and MCC scores, the Random Forest maximized the precision, and the KNN had a quasi-perfect
recall. Unfortunately, pre-trained LLMs did not achieve the expected performance, requiring further
pre-training in the security domain. Nevertheless, all models fell victim to the same phenomenon,
i.e., a noticeable drop at later validation rounds, likely due to the large imbalance in the test sets.
Future research directions include the experimentation of novel mechanisms to build a more

reliable and sound ground truth—e.g., by combining multiple data sources—or alternative learning
configurations to improve the early exploitability prediction model performance. We envision
possible further developments to make exploitability prediction more powerful and useful, such as
employing an incremental exploitability prediction system to guide the choice of which counter-
measures to apply when a new vulnerability is published, e.g., helping to decide which vulnerability
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must be addressed before than others. Such a system can also be integrated with an impact esti-
mation module to provide a full overview of the risk connected to a newly found vulnerability.
From a different perspective, we hypothesize that exploitability prediction modeling can be further
improved by retrieving peculiar information from the software systems affected by just-disclosed
vulnerabilities and using fine-grained text analysis tools that extract relevant elements from un-
structured text, such as code snippets or stack traces, to have a more relevant feature space from
which the models can better learn.
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